Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways

文献类型: 外文期刊

第一作者: Li, Ruiqing

作者: Li, Ruiqing;Wu, Liquan;Hu, Qunwen;Shao, Yafang;Zhang, Huali

作者机构:

关键词: Rice; Heavy metal stress; Melatonin; Seed priming; Germination; Amylose; Antioxidant system

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:5.437; 五年影响因子:5.731 )

ISSN: 0981-9428

年卷期: 2022 年 179 卷

页码:

收录情况: SCI

摘要: Copper (Cu) contamination dramatically affects crop growth and thus threatens crop production; while applications of melatonin (MT) serve as an effective way to tolerate Cu stress for plant development, the underlying mechanism remains largely unknown in rice. Here, we found that Cu toxicity remarkably decreased germination rates and seedling growth compared to the untreated control (CK), while seed priming with a solution of 100 mu M MT significantly alleviated the adverse effects on Cu-stressed seeds. In addition, the MT treatment decreased the accumulation of Cu in seedlings at 7 days after imbibition (DAI), possibly through enhanced Cu sequestration, and improved reserve mobilization through the promoted activity of alpha-amylase and protease in seeds under Cu stress. Interestingly, gibberellin (GA) synthesis was restored to or even exceeded the CK levels in the MT presoaking treatment, while the abscisic acid (ABA) content decreased compared to those of the Cu-stressed seeds, suggesting crosstalk between MT and other phytohormones, e.g., GA and ABA. More importantly, MT pretreatment also significantly promoted the growth of postgermination seedlings. This was largely ascribed to the MT-ameliorated antioxidant system, which consequently reduced the accumulation of Cu stress-induced oxidative products, e.g., hydrogen peroxide (H2O2), malondialdehyde (MDA), and superoxide (O-2.-). Collectively, these results demonstrate that seed priming with MT could greatly mitigate the adverse effects of Cu stress on seed germination and subsequent postgermination growth through crosstalk among various defensive response pathways. This study provides vital guidance for applications of MT in agronomic production.

分类号:

  • 相关文献
作者其他论文 更多>>