New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb.

文献类型: 外文期刊

第一作者: Zhang, Yue

作者: Zhang, Yue;Zhou, Shujun;Cai, Junhuo;Nie, Zixuan;Zhang, Lu;Zhang, Yue;Chen, Yu;Zhang, Pengchong;Zhang, Yongchun

作者机构:

关键词: Lycoris; Karyotype; Genome size; FISH; Interspecific relationships; Basic chromosome number

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.8; 五年影响因子:5.4 )

ISSN: 1471-2229

年卷期: 2025 年 25 卷 1 期

页码:

收录情况: SCI

摘要: BackgroundFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.ResultsThe findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.ConclusionThe study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.

分类号:

  • 相关文献
作者其他论文 更多>>