您好,欢迎访问北京市农林科学院 机构知识库!

基于注意力机制和多尺度残差网络的农作物病害识别

文献类型: 中文期刊

作者: 黄林生 1 ; 罗耀武 1 ; 杨小冬 2 ; 杨贵军 2 ; 王道勇 1 ;

作者机构: 1.安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心

2.北京农业信息技术研究中心农业农村部农业遥感机理与定量遥感重点实验室

关键词: 农作物病害识别;残差网络;特征提取;多尺度卷积;注意力机制

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2021 年 010 期

页码: 264-271

收录情况: EI ; 北大核心 ; CSCD

摘要: 针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其多尺度卷积核结构对不同尺度的病害特征进行提取,提高了特征的丰富度。在残差结构的基础上加入注意力机制SE-Net(Squeeze-and-excitation networks),增强了有用特征的权重,减弱了噪声等无用特征的影响,进一步提高特征提取能力并且增强了模型的鲁棒性。实验结果表明,改进后的多尺度注意力残差网络模型(Multi-Scale-SE-ResNet18)在复杂田间环境收集的8种农作物病害数据集上的平均识别准确率达到95.62%,相较于原ResNet18模型准确率提高10.92个百分点,模型占用内存容量仅为44.2 MB。改进后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下农作物病害识别提供参考。

  • 相关文献

[1]基于多尺度和注意力机制的番茄病害识别方法. 张宁,吴华瑞,韩笑,缪祎晟. 2021

[2]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022

[3]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019

[4]改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法. 龙洁花,赵春江,林森,郭文忠,文朝武,张宇. 2021

[5]基于改进YOLO v3-tiny的全景图像农田障碍物检测. 陈斌,张漫,徐弘祯,李寒,尹彦鑫. 2021

[6]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[7]融合注意力机制的开集猪脸识别方法. 王荣,高荣华,李奇峰,刘上豪,于沁杨,冯璐. 2023

[8]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[9]基于Attention_DenseCNN的水稻问答系统问句分类. 王郝日钦,吴华瑞,冯帅,刘志超,许童羽. 2021

[10]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[11]基于注意力机制的农业文本命名实体识别. 赵鹏飞,赵春江,吴华瑞,王维. 2021

[12]基于改进UperNet的结球甘蓝叶球识别方法. 朱轶萍,吴华瑞,郭旺,吴小燕. 2024

[13]基于改进YOLOV5s网络的奶牛多尺度行为识别方法. 白强,高荣华,赵春江,李奇峰,王荣,李书琴. 2022

[14]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[15]基于YOLOX的穴盘甘蓝病害检测方法. 马驰,吴华瑞,于会山. 2023

[16]复杂场景下害虫目标检测算法:YOLOv8-Extend. 张荣华,白雪,樊江川. 2024

[17]基于改进边界匹配网络的鱼群摄食动作时序检测方法研究. 王丁弘,杨信廷,潘良,朱文韬,焦冬祥,周超. 2023

[18]融合农村居民意图的健康知识推荐方法. 王馨悦,吴华瑞,陈雯柏,韩笑,朱华吉,赵春江. 2024

[19]近红外光谱的苹果内部品质在线检测模型优化. 郭志明,黄文倩,陈全胜,彭彦昆,赵杰文. 2016

[20]基于视频的植物动画合成方法. 蒋艳娜,肖伯祥,郭新宇,杨宝祝. 2015

作者其他论文 更多>>