您好,欢迎访问北京市农林科学院 机构知识库!

多结构参数集成学习的设施黄瓜病害智能诊断

文献类型: 中文期刊

作者: 高荣华 1 ; 李奇峰 1 ; 孙想 1 ; 顾静秋 1 ; 彭程 1 ;

作者机构: 1.北京农业信息技术研究中心/北京市农林科学院

关键词: 图像识别;智能系统;病害;多结构参数;学习向量化;智能诊断

期刊名称: 农业工程学报

ISSN: 1002-6819

年卷期: 2020 年 36 卷 016 期

页码: 158-165

收录情况: EI ; 北大核心 ; CSCD

摘要: 单一特征已不能很好的描述作物病害典型特征,而生长环境参数(土壤温湿度、pH值、空气温湿度等)与病害密切相关,多结构数据学习向量化与特征最优组合能够有效提升病害诊断准确性.该研究以黄瓜白粉病、角斑病、炭疽病、菌核病4种病害50个样本为实例,融合结构化作物生长环境参数与非结构化图像特征,通过智能化物联网,对实时采集到的环境参数进行监测、分析,并将其与图像特征融合,构建多结构病害特征最优组合模型.试验结果表明,样本识别率在79.4%~93.6%,对比卷积神经网络图像识别识别率,卷积神经网络由于需要对病害图像数据进行降维,后台识别时间较高;深度迁移学习的图像识别方法,需要大量图像数据输入深度网络学习,而现实中病害图像数量不足以满足深度学习要求,因此识别率会因为样本不充分而降低;该方法借助少量图像数据,同时结合环境与专家知识资源,采用多结构参数集成学习的方法进行病害识别,在较少识别时间的基础上确保识别的准确性.

  • 相关文献

[1]畜禽疫病智能防控技术发展现状与展望. 蒋瑞祥,余礼根,丁露雨,高荣华,马为红,李奇峰,崔晓东. 2020

[2]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[3]玉米栽培理论及智能决策系统的研究进展. 郭银巧,李存东,赵春江,郭新宇. 2005

[4]分布式园艺作物智能系统平台的研究与开发. 孙想,吴华瑞,顾静秋,郝鹏. 2005

[5]多通道精准化农业信息服务平台建设——以北京市大兴区安定镇农业信息服务示范基地为例. 孟鹤,罗长寿,孙素芬. 2015

[6]基于NC的农业智能系统开发平台的研究与实现. 孙想,吴华瑞,顾静秋,郝鹏. 2005

[7]基于DRGB的运动中肉牛形体部位识别. 邓寒冰,许童羽,周云成,苗腾,张聿博,徐静,金莉,陈春玲. 2018

[8]基于图像纹理特征的养殖鱼群摄食活动强度评估. 陈彩文,杜永贵,周超,孙传恒. 2017

[9]高光谱成像技术和主成分分析识别玉米籽粒的胚(英文). 黄文倩,李江波,张驰,张保华,张百海. 2012

[10]红外传感器与机器视觉融合的果树害虫识别及计数方法. 田冉,陈梅香,董大明,李文勇,矫雷子,王以忠,李明,孙传恒,杨信廷. 2016

[11]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[12]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[13]一种谷粒粒形参数的高通量智能检测方法. 吴建伟,明博,卢大文,杨宝祝. 2015

[14]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[15]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[16]基于二分法的鸡蛋图像边缘快速检测方法. 周平,赵春江,郑文刚,王纪华,孙忠富,文友先. 2010

[17]自然场景下基于混合颜色空间的成熟期苹果识别方法. 钱建平,杨信廷,吴晓明,陈梅香,吴保国. 2012

[18]基于动态集成的黄瓜叶部病害识别方法. 王志彬,王开义,王书锋,王晓锋,潘守慧. 2017

[19]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[20]基于弹性动量深度学习神经网络的果体病理图像识别. 谭文学,赵春江,吴华瑞,高荣华. 2015

作者其他论文 更多>>