您好,欢迎访问北京市农林科学院 机构知识库!

融合无人机影像光谱与纹理特征的冬小麦氮营养指数估算

文献类型: 中文期刊

作者: 杨福芹 1 ; 冯海宽 2 ; 肖天豪 3 ; 李天驰 1 ; 郭向前 4 ;

作者机构: 1.河南工程学院土木工程学院

2.国家农业信息化工程技术研究中心

3.河南省测绘工程院

4.河南省地质矿产勘查开发局

关键词: 无人机;数码影像;纹理特征;氮营养指数;图-谱融合指标

期刊名称: 农业现代化研究

ISSN: 1000-0275

年卷期: 2020 年 004 期

页码: 718-726

收录情况: 北大核心 ; CSCD

摘要: 基于无人机数码影像,探讨融合光谱信息与纹理特征构建的"图-谱"指标对冬小麦氮营养指数的估算能力,为冬小麦氮素营养精准探测提供一种可靠的技术手段.利用无人机数码影像及相应的生物量和植株氮含量数据,分析了图像指数、纹理特征与氮营养指数的相关性,然后将图像指数与纹理特征相乘或相除融合形成"图-谱"融合指标,分析"图-谱"融合指标与氮营养指数的相关性,整合灰色关联度和方差膨胀因子,筛选对氮营养指数敏感的"图-谱"融合指标,最后用偏最小二乘法分析图像指数、纹理特征及"图-谱"融合指标估测氮营养指数的能力.结果表明:"图-谱"融合指标较图像指数、纹理特征与氮营养指数的相关性有了较大的提高,利用"图-谱"融合指标构建的氮营养指数模型估算精度(R~2=0.644 3)高于图像指数及纹理特征构建的氮营养指数模型(R~2分别为0.593 8及0.584 5),而且"图-谱"融合指标构建的模型验证结果均方根误差最小,为0.114 0.基于光谱信息和纹理特征融合的"图-谱"指标可以有效提高冬小麦氮营养指数的反演精度,为冬小麦氮素营养诊断反演提供了一种有效的思路.

  • 相关文献

[1]融合无人机光谱信息与纹理信息的冬小麦生物量估测. 刘畅,杨贵军,李振海,汤伏全,王建雯,张春兰,张丽妍. 2018

[2]基于无人机数码影像的冬小麦叶面积指数探测研究. 高林,杨贵军,李红军,李振海,冯海宽,王磊,董锦绘,贺鹏. 2016

[3]基于无人机数码影像的大豆育种材料叶面积指数估测. 李长春,牛庆林,杨贵军,冯海宽,刘建刚,王艳杰. 2017

[4]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019

[5]基于无人机数码影像的冬小麦株高和生物量估算. 陶惠林,徐良骥,冯海宽,杨贵军,杨小冬,苗梦珂,代阳. 2019

[6]基于无人机数码影像的玉米育种材料株高和LAI监测. 牛庆林,冯海宽,杨贵军,李长春,杨浩,徐波,赵衍鑫. 2018

[7]利用无人机数码影像估算马铃薯地上生物量. 刘杨,黄珏,孙乾,冯海宽,杨贵军,杨福芹. 2021

[8]基于冠层光谱特征和株高的马铃薯植株氮含量估算. 樊意广,冯海宽,刘杨,边明博,孟炀,杨贵军. 2022

[9]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[10]无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量. 陈鹏,冯海宽,李长春,杨贵军,杨钧森,杨文攀,刘帅兵. 2019

[11]基于高光谱的冬小麦氮素营养指数估测. 王仁红,宋晓宇,李振海,杨贵军,郭文善,谭昌伟,陈立平. 2014

[12]东北地区春玉米临界氮浓度稀释曲线的建立和验证. 卢宪菊,郭新宇,温维亮,于泽涛. 2019

[13]结合航空影像纹理和光谱特征的单木冠幅提取. 张凝,冯跃文,张晓丽,樊江川. 2015

[14]不同分辨率无人机数码影像的马铃薯地上生物量估算研究. 刘杨,冯海宽,孙乾,杨福芹,杨贵军. 2021

[15]综合光谱纹理和时序信息的油茶遥感提取研究. 孟浩然,李存军,郑翔宇,宫雨生,刘玉,潘瑜春. 2023

[16]遥感影像融合与分类在城市边缘带扩展监测中应用研究. 孙丹峰,李红. 2002

[17]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[18]基于多载荷无人机遥感的大豆地上鲜生物量反演. 陆国政,杨贵军,赵晓庆,王艳杰,李长春,张小燕. 2017

[19]基于无人机遥感影像的大豆叶面积指数反演研究. 高林,杨贵军,王宝山,于海洋,徐波,冯海宽. 2015

[20]基于多源遥感数据的大豆叶面积指数估测精度对比. 高林,李长春,王宝山,杨贵军,王磊,付奎. 2016

作者其他论文 更多>>