您好,欢迎访问北京市农林科学院 机构知识库!

最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究

文献类型: 中文期刊

作者: 谢巧云 1 ; 黄文江 1 ; 梁栋 2 ; 彭代亮 1 ; 黄林生 2 ; 宋晓宇 3 ; 张东彦 2 ; 杨贵军 3 ;

作者机构: 1.中国科学院遥感与数字地球研究所

2.安徽大学

3.北京农业信息技术研究中心

关键词: 最小二乘支持向量机;叶面积指数;高光谱;普适性;冬小麦

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2014 年 02 期

页码: 203-207

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis,PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM模型都具有比NDVI模型更高的决定系数和更低的均方根误差值,即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。

  • 相关文献

[1]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020

[2]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018

[3]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[4]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018

[5]基于高光谱和PLS-LS-SVM的冬小麦叶绿素含量检测. 王伟,彭彦昆,王秀,马伟. 2010

[6]冬小麦叶面积指数遥感反演方法比较研究. 谢巧云,黄文江,蔡淑红,梁栋,彭代亮,张清,黄林生,杨贵军,张东彦. 2014

[7]病害胁迫下玉米LAI遥感反演研究. 刘帅兵,金秀良,冯海宽,聂臣巍,白怡,程明瀚. 2023

[8]利用TM遥感进行冬小麦苗期长势监测研究. 李卫国,国家农业信息化工程技术研究中心,王纪华,赵春江,李秉柏. 2006

[9]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

[10]表征冬小麦倒伏强度敏感冠层结构参数筛选及光谱诊断模型. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓. 2019

[11]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[12]冬小麦条锈病的光谱特征及遥感监测. 王纪华,黄文江,黄义德,赵春江,万安民. 2003

[13]冬小麦条锈病生理变化及其遥感机理. 黄义德,黄文江,刘良云,王纪华,万安民. 2004

[14]利用高光谱微分指数进行冬小麦条锈病病情的诊断研究. 蒋金豹,陈云浩,黄文江. 2007

[15]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[16]病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究. 蒋金豹,陈云浩,黄文江. 2007

[17]条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型. 蒋金豹,陈云浩,黄文江,李京. 2008

[18]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019

[19]冬小麦生育前期LAI高光谱反演研究. 何小安,李存军,周静平,赵叶,葛艳. 2019

[20]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

作者其他论文 更多>>