您好,欢迎访问北京市农林科学院 机构知识库!

基于Faster R-CNN网络的茶叶嫩芽检测

文献类型: 中文期刊

作者: 朱红春 1 ; 李旭 1 ; 孟炀 2 ; 杨海滨 3 ; 徐泽 3 ; 李振海 1 ;

作者机构: 1.山东科技大学测绘与空间信息学院

2.北京市农林科学院信息技术研究中心

3.重庆市农业科学院茶叶研究所

关键词: 茶叶嫩芽;识别检测;深度学习;卷积神经网络

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2022 年 53 卷 005 期

页码: 217-224

收录情况: EI ; 北大核心 ; CSCD

摘要: 为有效识别茶叶嫩芽提高机械采摘精度、规划采摘路线以避免伤害茶树,针对传统目标检测算法在复杂背景下检测精度低、鲁棒性差、速度慢等问题,探索了基于Faster R-CNN目标检测算法在复杂背景下茶叶嫩芽检测方面的应用.首先对采集图像分别进行等分裁切、标签制作、数据增强等处理,制作VOC2007数据集;其次在计算机上搭建深度学习环境,调整参数进行网络模型训练;最后对已训练模型进行测试,评价已训练模型的性能,并同时考虑了 FasterR-CNN模型对于嫩芽类型(单芽和一芽一叶/二叶)的检测精度.结果表明,当不区分茶叶嫩芽类型时,平均准确度(AP)为54%,均方根误差(RMSE)为3.32;当区分茶叶嫩芽类型时,单芽和一芽一叶/二叶的AP为22%和75%,RMSE为2.84;另外剔除单芽后,一芽一叶/二叶的AP为76%,RMSE为2.19.通过对比基于颜色特征和阈值分割的茶叶嫩芽识别算法(传统目标检测算法),表明深度学习目标检测算法在检测精度和速度上明显优于传统目标检测算法(RMSE为5.47).可以较好地识别复杂背景下的茶叶嫩芽.

  • 相关文献

[1]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[2]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[3]基于脸部RGB-D图像的牛只个体识别方法. 刘世锋,常蕊,李斌,卫勇,王海峰,贾楠. 2023

[4]卷积神经网络及其在田间杂草管理中应用的研究进展. 张金梦,张倩,王明,谭雅蓉,陶震宇,于金莹. 2024

[5]基于卷积模型的农业问答语性特征抽取分析. 张明岳,吴华瑞,朱华吉. 2018

[6]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[7]基于紫外-可见光谱与深度学习CNN算法的水质COD预测模型研究. 贾文珅,张恒之,马洁,梁刚,王纪华,刘鑫. 2020

[8]基于多语义特征的农业短文本匹配技术. 金宁,赵春江,吴华瑞,缪祎晟,王海琛,杨宝祝. 2022

[9]基于CNN的作物分类识别图像获取平台研究进展. 张倩,王明,于峰,陶震宇,张辉,李刚. 2024

[10]基于多模态数据驱动的黄瓜温室湿度预测方法. 黄天艺,吴华瑞,朱华吉. 2023

[11]基于卷积神经网络的田间麦穗检测方法研究. 张合涛,赵春江,王传宇,郭新宇,李大壮,苟文博. 2023

[12]基于CNN-GRU的菇房多点温湿度预测方法研究. 赵全明,宋子涛,李奇峰,郑文刚,刘宇,张钟莉莉. 2020

[13]基于卷积神经网络的生菜多光谱图像分割与配准. 黄林生,邵松,卢宪菊,郭新宇,樊江川. 2021

[14]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[15]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[16]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019

[17]基于云原生技术的土壤墒情监测系统设计与应用. 于景鑫,杜森,吴勇,钟永红,张钟莉莉,郑文刚,李文龙. 2020

[18]基于深度学习的跨年龄人脸识别. 孙文斌,王荣,孙连烛,林源松. 2022

[19]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[20]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

作者其他论文 更多>>