您好,欢迎访问北京市农林科学院 机构知识库!

基于动态集成的黄瓜叶部病害识别方法

文献类型: 中文期刊

作者: 王志彬 1 ; 王开义 2 ; 王书锋 2 ; 王晓锋 2 ; 潘守慧 3 ;

作者机构: 1.北京农业信息技术研究中心;农业部农业信息技术重点实验室;北京工业大学信息学部

2.;北京农业信息技术研究中心;农业部农业信息技术重点实验室;北京工业大学信息学部

3.;北京农业信息技术研究中心;农业部农业信息技术重点实验室;北京工业大学信息学部;

关键词: 黄瓜;叶部病害;图像识别;集成学习;差异性度量;动态选择

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2017 年 09 期

页码: 46-52

收录情况: EI ; 北大核心 ; CSCD

摘要: 对作物病害类型的准确识别是病害防治的前提。为提高病害识别的准确度,以黄瓜叶部病害识别为例,提出一种基于动态集成的作物叶部病害种类的识别方法。首先利用图像分块策略提取病害图像的75维颜色统计特征,然后采用不一致度量方法对构建的10个BP神经网络单分类器进行差异性度量,并按照差异性大小进行排序,最后根据分类器的可信度,动态选择差异性大的分类器子集对病害图像进行集成识别。在由512幅白粉病、霜霉病、灰霉病和正常叶片4类黄瓜叶片组织图像构成的测试集上,所提方法的识别错误率为3.32%,分别比BP神经网络、SVM、Bagging、Ada Boost算法降低了1.37个百分点、1.56个百分点、1.76个百分点、0.78个百分点。试验结果表明:所提方法能够实现黄瓜叶部病害种类的准确识别,可为其它作物病害的识别提供借鉴。

  • 相关文献

[1]基于高光谱与集成学习的单粒玉米种子水分检测模型. 吴静珠,张乐,李江波,刘翠玲,孙晓荣,余乐. 2022

[2]基于DRGB的运动中肉牛形体部位识别. 邓寒冰,许童羽,周云成,苗腾,张聿博,徐静,金莉,陈春玲. 2018

[3]基于图像纹理特征的养殖鱼群摄食活动强度评估. 陈彩文,杜永贵,周超,孙传恒. 2017

[4]高光谱成像技术和主成分分析识别玉米籽粒的胚(英文). 黄文倩,李江波,张驰,张保华,张百海. 2012

[5]红外传感器与机器视觉融合的果树害虫识别及计数方法. 田冉,陈梅香,董大明,李文勇,矫雷子,王以忠,李明,孙传恒,杨信廷. 2016

[6]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[7]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[8]一种谷粒粒形参数的高通量智能检测方法. 吴建伟,明博,卢大文,杨宝祝. 2015

[9]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[10]多结构参数集成学习的设施黄瓜病害智能诊断. 高荣华,李奇峰,孙想,顾静秋,彭程. 2020

[11]畜禽疫病智能防控技术发展现状与展望. 蒋瑞祥,余礼根,丁露雨,高荣华,马为红,李奇峰,崔晓东. 2020

[12]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[13]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[14]基于二分法的鸡蛋图像边缘快速检测方法. 周平,赵春江,郑文刚,王纪华,孙忠富,文友先. 2010

[15]自然场景下基于混合颜色空间的成熟期苹果识别方法. 钱建平,杨信廷,吴晓明,陈梅香,吴保国. 2012

[16]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[17]基于弹性动量深度学习神经网络的果体病理图像识别. 谭文学,赵春江,吴华瑞,高荣华. 2015

[18]基于摄食状态图像识别技术的锦鲤产量估算方法研究. 马茵驰,韦惟,周超. 2021

[19]基于改进YOLOV5s网络的奶牛多尺度行为识别方法. 白强,高荣华,赵春江,李奇峰,王荣,李书琴. 2022

[20]基于双侧图像识别的单株苹果树产量估测模型. 钱建平,李明,杨信廷,吴保国,张勇,王衍安. 2013

作者其他论文 更多>>