您好,欢迎访问北京市农林科学院 机构知识库!

基于概率神经网络的水稻穗颈瘟高光谱遥感识别初步研究

文献类型: 中文期刊

作者: 李波 1 ; 刘占宇 1 ; 武洪峰 2 ; 徐新刚 3 ; 孙安利 3 ; 黄敬峰 1 ;

作者机构: 1.浙江大学农业遥感与信息技术应用研究所

2.黑龙江省农垦科学院科技情报研究所

3.国家农业信息化工程技术研究中心

关键词: 水稻;穗颈瘟;高光谱遥感;概率神经网络

期刊名称: 科技通报

ISSN: 1001-7119

年卷期: 2009 年 25 卷 06 期

页码: 109-113

收录情况: 北大核心

摘要: 穗颈瘟的发生会导致稻米产量降低和品质下降,对穗颈部发生侵染但并未引起倒伏的水稻(D)、穗颈部侵染严重已发生倒伏的水稻(L)和正常水稻(H)进行准确地识别和区分是采取病虫害防治措施和灾害评估的基础。本研究选用水稻黄熟期田间冠层测定的27个H的冠层样本、9个D的冠层样本和10个L的冠层样本数据,并以这些样本数据的红边斜率、红边面积、绿波峰值和绿峰面积等4个高光谱变量作为分析数据,分别运用概率神经网络和系统聚类法进行分类识别,识别精度可以分别高达到93.5%和91.3%,显然,在进行分类识别时概率神经网络这种新方法优于传统的系统聚类法。研究表明,概率神经网络具有更为强大的分类功能,应用于穗颈瘟的高光谱识别,可以实现对D、L和H精确分类,能够补充和完善传统的肉眼观测。

  • 相关文献

[1]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[2]高光谱遥感监测冬小麦条锈病的研究进展(综述). 黄木易,王纪华,黄义德,黄文江,赵春江,刘良云. 2004

[3]高光谱遥感在植被理化信息提取中的应用动态. 谭昌伟,王纪华,黄文江,刘良云,黄义德,严伟才. 2005

[4]高光谱遥感叶面积指数(LAI)反演研究现状. 邢著荣,冯幼贵,李万明,王萍,杨贵军. 2010

[5]用高光谱微分指数监测冬小麦病害的研究. 蒋金豹,陈云浩,黄文江. 2007

[6]基于GA的GRNN高光谱遥感反演冬小麦叶片氮含量模型的建立与验证. 孙焱鑫,王纪华,李保国,刘良云,黄文江,赵春江. 2007

[7]应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算. 付元元,王纪华,杨贵军,宋晓宇,徐新刚,冯海宽. 2013

[8]主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究. 陈云浩,蒋金豹,黄文江,王圆圆. 2009

[9]小麦条锈病高光谱近地与高空遥感监测比较研究. 蔡成静,马占鸿,王海光,张玉萍,黄文江. 2007

[10]融合可见光-近红外与短波红外特征的新型植被指数估算冬小麦LAI. 李鑫川,鲍艳松,徐新刚,金秀良,张竞成,宋晓宇. 2013

[11]用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度. 蒋金豹,陈云浩,黄文江. 2010

[12]冬小麦条锈病严重度不同估算方法对比研究. 王静,景元书,黄文江,张竞成,赵娟,张清,王力. 2015

[13]基于BP和GRNN神经网络的冬小麦冠层叶绿素高光谱反演建模研究. 孙焱鑫,王纪华,李保国,刘良云,黄文江,赵春江. 2007

[14]基于改进的PRI方法对植被冠层叶绿素含量的反演. 宁艳玲,张学文,韩启金,杨宝祝. 2014

[15]基于可见光-近红外光谱特征参数的苹果叶片氮含量预测. 杨福芹,冯海宽,李振海,杨贵军,戴华阳. 2017

[16]基于微分变换定量反演土壤有机质及全氮含量. 高颖,王延仓,顾晓鹤,周新武,马样,宣孝义. 2020

[17]基于可见光-近红外新光谱特征和最优组合原理的大麦叶片氮含量监测. 徐新刚,赵春江,王纪华,李存军,杨小冬. 2013

[18]作物氮素营养诊断方法的研究现状及进展. 郭建华,赵春江,王秀,陈立平. 2008

[19]冬小麦条锈病严重度高光谱遥感反演模型研究. 蒋金豹,陈云浩,黄文江,李京. 2007

[20]小麦冠层理化参量的高光谱遥感反演试验研究. 杨敏华,刘良云,刘团结,黄文江,赵春江. 2002

作者其他论文 更多>>