您好,欢迎访问北京市农林科学院 机构知识库!

基于赤池信息量准则的冬小麦叶面积指数估算

文献类型: 中文期刊

作者: 杨福芹 1 ; 冯海宽 2 ; 李振海 3 ; 金秀良 3 ; 杨贵军 2 ; 戴华阳 1 ;

作者机构: 1.中国矿业大学北京地球科学与测绘工程学院

2.国家农业信息化工程技术研究中心

3.农业部农业信息技术重点实验室

关键词: 冬小麦;叶面积指数;估算;赤池信息量准则

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2015 年 46 卷 11 期

页码: 112-120+164

收录情况: EI ; 北大核心 ; CSCD

摘要: 冬小麦叶面积指数(LAI)是重要的农学参数之一,对冬小麦长势分析、产量预测具有重要意义。使用2008/2009年在中国北京市通州区和顺义区获取的整个生育期冬小麦叶面积指数和对应的光谱数据,将相关系数(|r|)-赤池信息量准则(AIC)、灰色关联分析(GRA)-AIC、变量投影重要性(VIP)-AIC、VIP-预测残差平方和(PRESS)系数分别与偏最小二乘法(PLS)进行整合,提出利用AIC择优构建冬小麦LAI估算模型,并与传统PRESS方法构建的冬小麦LAI模型进行比较。结果表明:|r|-PLS-AIC、GRA-PLS-AIC、VIP-PLS-AIC、VIP-PLS-PRESS建模的R2分别为0.72、0.67、0.73和0.70,VIP-PLS-AIC比|r|-PLS-AIC、GRA-PLS-AIC和VIP-PLS-PRESS有更好的冬小麦LAI预测能力。考虑到冬小麦LAI的时域特性,将2009/2010年相关数据引入模型中,评价模型对不同年际的冬小麦估测能力。研究表明VIP-PLS-AIC(RMSE为0.81)较|r|-PLS-AIC(RMSE为0.87)、GRA-PLS-AIC(RMSE为0.96)和VIPPLS-PRESS(RMSE为0.83)有更高的精度。将AIC作为冬小麦LAI最优估测模型筛选条件不仅能获得同年LAI的最优估算模型,而且适用于不同年际的冬小麦LAI探测研究。

  • 相关文献

[1]基于赤池信息量准则的冬小麦叶面积指数高光谱估测. 杨福芹,冯海宽,李振海,高林,杨贵军,戴华阳. 2016

[2]基于赤池信息准则的冬小麦植株氮含量高光谱估算. 杨福芹,戴华阳,冯海宽,杨贵军,李振海,陈召霞. 2016

[3]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019

[4]基于无人机高光谱遥感数据的冬小麦产量估算. 陶惠林,徐良骥,冯海宽,杨贵军,杨小冬,牛亚超. 2020

[5]基于冠层光谱植被指数的冬小麦作物系数估算. 李贺丽,罗毅,赵春江,杨贵军. 2013

[6]利用TM遥感进行冬小麦苗期长势监测研究. 李卫国,国家农业信息化工程技术研究中心,王纪华,赵春江,李秉柏. 2006

[7]株型对冬小麦冠层叶面积指数与植被指数关系的影响研究. 唐怡,黄文江,刘良云,王纪华. 2006

[8]不同株型冬小麦冠层结构特征多时相分析. 杨贵军,邢著荣,黄文江,齐腊,李伟国. 2010

[9]基于无人机数码影像的冬小麦叶面积指数探测研究. 高林,杨贵军,李红军,李振海,冯海宽,王磊,董锦绘,贺鹏. 2016

[10]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[11]基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究. 李卫国,王纪华,赵春江,童庆禧,刘良云. 2007

[12]最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究. 谢巧云,黄文江,梁栋,彭代亮,黄林生,宋晓宇,张东彦,杨贵军. 2014

[13]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020

[14]冬小麦叶面积指数地面测量方法的比较. 刘镕源,王纪华,杨贵军,黄文江,李伟国,常红,李小文. 2011

[15]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018

[16]基于改进水云模型和Radarsat-2数据的农田土壤含水量估算. 杨贵军,岳继博,李长春,冯海宽,杨浩,兰玉彬. 2016

[17]基于无人机成像高光谱影像的冬小麦LAI估测. 陶惠林,冯海宽,杨贵军,杨小冬,刘明星,刘帅兵. 2020

[18]不同灌溉条件下冬小麦冠层含水量的光谱响应. 孙乾,顾晓鹤,孙林,王淼,周龙飞,杨贵军,李卫国,束美艳. 2019

[19]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[20]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018

作者其他论文 更多>>