您好,欢迎访问北京市农林科学院 机构知识库!

冬小麦白粉病冠层光谱特征解析与病情指数反演

文献类型: 中文期刊

作者: 范友波 1 ; 顾晓鹤 2 ; 王双亭 1 ; 杨贵军 2 ; 王磊 1 ; 王立志 1 ; 陈召霞 2 ;

作者机构: 1.河南理工大学测绘与国土信息工程学院

2.国家农业信息化工程技术研究中心

关键词: 冬小麦;白粉病;高光谱;特征参量;植被指数

期刊名称: 麦类作物学报

ISSN: 1009-1041

年卷期: 2017 年 37 卷 01 期

页码: 136-143

收录情况: 北大核心 ; CSCD

摘要: 为探讨利用高光谱技术快速无损地监测小麦白粉病灾情的方法,通过人工田间诱发白粉病,在灌浆期对不同发病等级(病情指数)的冬小麦进行冠层高光谱测定,对原始光谱数据进行一阶微分处理,筛选最佳光谱特征参量和植被指数,构建冬小麦白粉病病情指数反演模型。结果表明,在冠层尺度,小麦白粉病"红边"位置均在730nm左右(±1nm);经验证,5种模型中三角植被指数(TVI)模型估算精度最好,r2和RMSE分别达到了0.700和0.112,与精度最低的优化土壤调节植被指数(OSAVI)模型相比,r2提高了0.071,RMSE降低了0.013。小麦白粉病"红边"蓝移现象并不明显;五种模型r2都达到了0.6以上,说明高光谱技术都能够有效地对冬小麦白粉病病情指数进行无损、快速、精确的反演,其中TVI的反演精度最佳。

  • 相关文献

[1]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[2]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[3]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[4]扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 张东彦,宋晓宇,马智宏,杨贵军,黄文江,王纪华. 2010

[5]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[6]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[7]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[8]基于植被指数的叶绿素密度遥感反演建模与适用性研究. 张苏,刘良云,黄文江. 2013

[9]基于连续小波变换的冬小麦叶片最大净光合速率遥感估算. 苗梦珂,王宝山,李长春,龙慧灵,杨贵军,冯海宽,翟丽婷,刘明星,吴智超. 2020

[10]模拟多光谱卫星传感器数据的冬小麦白粉病遥感监测. 卫黎光,蒋金豹,杨贵军,聂臣巍,袁琳,黄文江,张竞成. 2014

[11]基于叶片光谱分析的小麦白粉病与条锈病区分及病情反演研究. 袁琳,张竞成,赵晋陵,黄文江,王纪华. 2013

[12]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[13]基于高光谱响应与模拟模型的冬小麦变量追氮研究. 蒋阿宁,黄文江,王纪华,刘克礼,赵春江,刘良云. 2007

[14]基于生长度日的冬小麦植株氮浓度监测. 赵钰,李振海,杨贵军,王建雯,段丹丹,杨武德,冯美臣. 2019

[15]基于无人机高光谱和数码影像数据的冬小麦生物量反演. 李天驰,冯海宽,朱贝贝,范园园,金丽妍,成倩,李倩雨. 2020

[16]基于高光谱维数约简与植被指数估算冬小麦叶面积指数的比较. 付元元,杨贵军,冯海宽,徐新刚,宋晓宇,王纪华. 2012

[17]利用无人机高光谱估算冬小麦叶绿素含量. 冯海宽,陶惠林,赵钰,杨福芹,樊意广,杨贵军. 2022

[18]基于冠层光谱植被指数的冬小麦作物系数估算. 李贺丽,罗毅,赵春江,杨贵军. 2013

[19]基于冬小麦筋型修正系数的籽粒蛋白质含量遥感预测. 赵春奇,李振海,杨贵军,段丹丹,赵钰,杨武德. 2020

[20]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

作者其他论文 更多>>