文献类型: 中文期刊
作者: 刘杨 1 ; 孙乾 1 ; 黄珏 2 ; 冯海宽 1 ; 王娇娇 1 ; 杨贵军 1 ;
作者机构: 1.农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心
2.山东科技大学测绘科学与工程学院
关键词: 马铃薯;多光谱;株高;植被指数;高频信息;地上生物量
期刊名称: 光谱学与光谱分析
ISSN: 1000-0593
年卷期: 2021 年 41 卷 008 期
页码: 2549-2555
收录情况: EI ; 北大核心 ; CSCD
摘要: 地上生物量(AGB)是评估作物生长发育和指导田间农业生产管理的重要指标.因此,高效精准地获取作物AGB信息,可以及时准确地估算产量,对于保障粮食供应和贸易提供有力依据.传统获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变为困难.然而,随着精准农业的快速发展,无人机遥感技术被认为是估算大面积作物AGB最有效的技术方式.通过无人机平台搭载多光谱传感器获取马铃薯块茎形成期、块茎增长期和淀粉积累期的多光谱影像,地面实测株高和AGB以及地面控制点(GCP)的空间位置信息.首先,基于SFM(structure from motion,SFM)技术利用无人机影像数据结合GCP的三维坐标生成试验田的DSM(digital surface model,DSM),通过DSM提取出马铃薯各生育期的株高(Hdsm);然后,选取原始4个单波段植被指数、9个多波段组合的植被指数、红边波段的高频信息(HFI)和提取的Hdsm分别与AGB作相关性分析;最后基于单波段植被指数(x1)、多波段组合的植被指数(x2)、植被指数结合Hdsm(x3)、植被指数结合HFI(x4)以及植被指数融合HFI和Hdsm(x5)为模型输入参数,采用偏最小二乘回归(PLSR)和岭回归(RR)估算各生育期的AGB.结果表明:(1)提取的Hdsm和实测株高拟合的R2为0.87,NRMSE为14.34%;(2)各模型参数都与AGB达到极显著水平,相关性均从块茎形成期到淀粉积累期先升高后降低;(3)各生育期以5种变量使用同种方法估算马铃薯AGB的效果,均从块茎形成期到淀粉积累期先好后变差,其估算精度由高到低依次为x5>x4>x3>x2>x1;(4)各生育期使用PLSR以不同变量估算AGB的效果要优于RR方法,其中在块茎增长期基于x5变量估算马铃薯AGB效果最佳,R2为0.73,NRMSE为15.22%.因此,选取多光谱植被指数结合红边波段的高频信息和Hdsm并使用PLSR方法可以明显提高AGB的估算精度,这为大面积马铃薯作物AGB的监测提供了新的技术支撑.
- 相关文献
作者其他论文 更多>>
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
融合多因子的无人机高光谱遥感冬小麦产量估算
作者:谢瑞;杨福芹;冯海宽;李天驰
关键词:冬小麦;无人机;高光谱;植被指数;氮营养指数
-
利用光谱空间特征估算马铃薯植株氮含量
作者:樊意广;冯海宽;刘杨;边明博;赵钰;杨贵军;钱建国
关键词:无人机;马铃薯;植株氮含量;植被指数;高频信息
-
不同生育期冬小麦植株氮含量遥感反演方法比较
作者:杨福芹;李蕊;冯海宽;李天驰;王果
关键词:冬小麦;植株氮含量;多元线性回归;逐步回归;偏最小二乘回归
-
基于无人机影像与GA-BP神经网络的生物量估算
作者:杨福芹;李天驰;冯海宽;解鹏;陈超;高磊磊
关键词:冬小麦;生物量;变量投影重要性;灰色关联;遗传算法;BP神经网络
-
基于冠层光谱和覆盖度的马铃薯叶片钾含量估算方法
作者:马彦鹏;边明博;樊意广;陈志超;杨贵军;冯海宽
关键词:马铃薯;叶片钾含量;冠层覆盖度;RGB影像;冠层光谱特征
-
利用无人机高光谱影像的冬小麦氮含量监测
作者:冯海宽;樊意广;陶惠林;杨福芹;杨贵军;赵春江
关键词:无人机;冬小麦;高光谱;氮含量;逐步回归;光谱特征参数