文献类型: 中文期刊
作者: 刘杨 1 ; 孙乾 1 ; 黄珏 2 ; 冯海宽 1 ; 王娇娇 1 ; 杨贵军 1 ;
作者机构: 1.农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心
2.山东科技大学测绘科学与工程学院
关键词: 马铃薯;多光谱;株高;植被指数;高频信息;地上生物量
期刊名称: 光谱学与光谱分析
ISSN: 1000-0593
年卷期: 2021 年 41 卷 008 期
页码: 2549-2555
收录情况: EI ; 北大核心 ; CSCD
摘要: 地上生物量(AGB)是评估作物生长发育和指导田间农业生产管理的重要指标.因此,高效精准地获取作物AGB信息,可以及时准确地估算产量,对于保障粮食供应和贸易提供有力依据.传统获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变为困难.然而,随着精准农业的快速发展,无人机遥感技术被认为是估算大面积作物AGB最有效的技术方式.通过无人机平台搭载多光谱传感器获取马铃薯块茎形成期、块茎增长期和淀粉积累期的多光谱影像,地面实测株高和AGB以及地面控制点(GCP)的空间位置信息.首先,基于SFM(structure from motion,SFM)技术利用无人机影像数据结合GCP的三维坐标生成试验田的DSM(digital surface model,DSM),通过DSM提取出马铃薯各生育期的株高(Hdsm);然后,选取原始4个单波段植被指数、9个多波段组合的植被指数、红边波段的高频信息(HFI)和提取的Hdsm分别与AGB作相关性分析;最后基于单波段植被指数(x1)、多波段组合的植被指数(x2)、植被指数结合Hdsm(x3)、植被指数结合HFI(x4)以及植被指数融合HFI和Hdsm(x5)为模型输入参数,采用偏最小二乘回归(PLSR)和岭回归(RR)估算各生育期的AGB.结果表明:(1)提取的Hdsm和实测株高拟合的R2为0.87,NRMSE为14.34%;(2)各模型参数都与AGB达到极显著水平,相关性均从块茎形成期到淀粉积累期先升高后降低;(3)各生育期以5种变量使用同种方法估算马铃薯AGB的效果,均从块茎形成期到淀粉积累期先好后变差,其估算精度由高到低依次为x5>x4>x3>x2>x1;(4)各生育期使用PLSR以不同变量估算AGB的效果要优于RR方法,其中在块茎增长期基于x5变量估算马铃薯AGB效果最佳,R2为0.73,NRMSE为15.22%.因此,选取多光谱植被指数结合红边波段的高频信息和Hdsm并使用PLSR方法可以明显提高AGB的估算精度,这为大面积马铃薯作物AGB的监测提供了新的技术支撑.
- 相关文献
作者其他论文 更多>>
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
基于Sentinel数据与多特征学习的大豆种植面积提取
作者:段承君;杜晓初;龙慧灵;梅新;杨贵军;张有智
关键词:大豆;种植面积;机器学习;Google Earth Engine
-
秦岭植被生态空天地遥感监测体系与平台建设构思
作者:张静;杨贵军;李振洪;雷蕾;刘淼;高美玲
关键词:遥感;植被;监测体系;生态环境;时空演变
-
基于高光谱和深度学习的水稻秸秆覆盖度遥感估算
作者:岳继博;李婷;宋洁;田庆久;刘杨;冯海宽
关键词:卷积神经网络;水稻秸秆覆盖度;深度学习;迁移学习
-
多源遥感数据耦合CBA-Wheat模型的冬小麦生物量估算研究
作者:王士俊;刘苗;赵钰;柳昭宇;刘修宇;冯海宽;隋学艳;李振海
关键词:冬小麦;地上生物量;遗传算法;CBA-Wheat;多源数据;EVI2;Sentinel-2;遥感
-
Spiking-Hybrid方法与机器学习结合的冬小麦LAI反演
作者:李平平;王夏军;王来刚;杨贵军;马园园;孙贺光;郑淳恺;宋晓宇
关键词:小麦;高光谱;Spiking-Hybrid方法;PROSAIL;少样本
-
叶片多理化参数的高光谱遥感与深度学习估算
作者:岳继博;冷梦蝶;田庆久;郭伟;刘杨;冯海宽;乔红波
关键词:深度学习;高光谱遥感;叶片蛋白质含量;叶片叶绿素含量;叶片类胡萝卜素含量