您好,欢迎访问北京市农林科学院 机构知识库!

基于Micro-CT分析大豆种子结构表型及构建种子重量预测模型

文献类型: 中文期刊

作者: 刘长斌 1 ; 李远鲲 2 ; 郭民坤 2 ; 樊江川 2 ; 郭新宇 2 ; 卢宪菊 2 ;

作者机构: 1.农芯科技(北京)有限责任公司

2.北京市农林科学院信息技术研究中心/数字植物北京市重点实验室

关键词: Micro-CT;大豆;结构表型;重量预测;模型构建;机器学习

期刊名称: 大豆科学

ISSN: 1000-9841

年卷期: 2025 年 44 卷 001 期

页码: 11-21

收录情况: 北大核心 ; CSCD

摘要: 大豆是重要的粮油兼用作物,是植物蛋白质的重要来源,为明确大豆种子结构特征并构建种子重量预测模型,以42个不同大豆品种为材料,利用Micro-CT技术扫描测试样本,通过CT图像的处理解析,获取大豆种子的长度、宽度、厚度、体积、表面积、种胚体积、表面积及空腔体积特征,人工称重测定单粒重量指标。系统分析种子形态特征及其与重量的相关关系,并对不同品种进行聚类分析,通过对多项形态表型和重量指标进行主成分分析,确定主要贡献指标,基于机器学习算法构建重量预测模型。结果表明:种子形态特征与种子重量显著相关,但种子形状特征对重量无显著影响;42个大豆品种可以分为4类,其中第一类品种蒙豆375和蒙豆60的种子大小和重量指标均显著高于其他3类品种。利用随机森林模型和偏最小二乘回归方法构建的重量预测模型效果优于单一指标的简单线性回归效果。其中,随机森林回归模型训练集和测试集的R2分别为0.80和0.66,RMSE分别为0.017和0.021 g,偏最小二乘回归模型训练集和测试集的R2分别为0.75和0.72,RMSE分别为0.019和0.020 g。研究结果为大豆种子外部形态和内部结构的研究提供了新的技术和方法,为大豆品种分类、产量和品质性状的评价提供理论和技术参考。

  • 相关文献

[1]基于Sentinel数据与多特征学习的大豆种植面积提取. 段承君,杜晓初,龙慧灵,梅新,杨贵军,张有智. 2024

[2]基于CT图像和RAUNet-3D的玉米籽粒三维结构测量. 杜建军,李大壮,廖生进,卢宪菊,郭新宇,赵春江. 2022

[3]基于Micro-CT的玉米籽粒显微表型特征研究. 赵欢,王璟璐,廖生进,张颖,卢宪菊,郭新宇,赵春江. 2021

[4]基于全透射可见-近红外光谱的西瓜糖度在线检测研究. 王贺功,黄文倩,蔡仲磊,严忠伟,黎胜,李江波. 2024

[5]近红外光谱模型的构建及其在饲料营养中的应用. 侯成立,季海峰,张董燕,王四新,刘辉,王晶,王雅民. 2011

[6]融合多环境参数的鸡粪氨气排放预测模型研究. 丁露雨,吕阳,李奇峰,王朝元,余礼根,宗伟勋. 2022

[7]基于改进的WOA-LSSVM樱桃番茄内部品质检测方法研究. 康明月,王成,孙鸿雁,李作麟,罗斌. 2023

[8]激光诱导击穿光谱结合化学计量学的淫羊藿产地快速鉴别. 罗雅文,董大明. 2023

[9]广东省农业发展优势度综合评价方法及其空间特征研究. 刘玉,孟超,蔡玉梅,路磊,唐林楠. 2021

[10]基于LDA_SVM的小麦质地检测方法研究. 赵薇,赵雪妮,康凯,刘长斌,罗斌,张晗. 2023

[11]农业大模型:关键技术、应用分析与发展方向. 郭旺,杨雨森,吴华瑞,朱华吉,缪祎晟,顾静秋. 2024

[12]基于Bayesian-XGBoost的生菜作物系数估算方法. 高海荣,张钟莉莉,岳焕芳,张馨,郭瑞,李志伟. 2022

[13]基于Sentinel-2时序数据的广东省英德市茶园分类研究. 陈盼盼,任艳敏,赵春江,李存军,刘玉. 2024

[14]利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度. 贾文珅,吕浩林,张上,秦英栋,周巍. 2024

[15]基于CNN的作物分类识别图像获取平台研究进展. 张倩,王明,于峰,陶震宇,张辉,李刚. 2024

[16]无人机观测时间对玉米冠层叶绿素密度估算的影响. 周丽丽,冯海宽,聂臣巍,许晓斌,刘媛,孟麟,薛贝贝,明博,梁齐云,苏涛,金秀良. 2024

[17]基于多层级特征筛选和无人机影像的冬小麦植株氮含量预测. 郭燕,王来刚,贺佳,井宇航,宋晓宇,张彦,刘婷. 2024

[18]融合无人机多源传感器的马铃薯叶绿素含量估算. 边明博,马彦鹏,樊意广,陈志超,杨贵军,冯海宽. 2023

[19]基于XGBoost的土壤含水量传感器温度补偿模型研究. 沈欣,吴勇,孟范玉,张赓,于景鑫,史凯丽. 2021

[20]基于机器视觉和穿戴式设备感知的村镇老年人跌倒监测方法. 邓颖,吴华瑞,孙想. 2021

作者其他论文 更多>>