您好,欢迎访问北京市农林科学院 机构知识库!

基于高光谱与集成学习的单粒玉米种子水分检测模型

文献类型: 中文期刊

作者: 吴静珠 1 ; 张乐 1 ; 李江波 1 ; 刘翠玲 1 ; 孙晓荣 1 ; 余乐 1 ;

作者机构: 1.北京工商大学食品安全大数据技术北京市重点实验室;北京农业智能装备技术研究中心

关键词: 单粒玉米;水分含量;高光谱;集成学习;自适应加权

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2022 年 05 期

页码: 302-308

收录情况: EI ; 北大核心 ; CSCD

摘要: 为建立单粒玉米种子水分含量的高精度检测模型,制备了80份不同水分含量的玉米种子样本。针对玉米种胚朝上和种胚朝下分别进行高光谱反射图像采集,每份样本取样100粒,波长范围为968.05~2 575.05 nm。采用PCA快速提取单粒种子光谱,经多元散射校正预处理后,分别采用随机森林(RF)和AdaBoost算法建立单粒种子水分检测模型,并集成两种算法特征提出基于加权策略的改进RF用于单粒种子水分含量建模。利用单粒玉米种子胚朝上的光谱信息建立的改进RF模型训练集相关系数R为0.969,训练集均方根误差(RMSEC)为0.094%,测试集R为0.881,测试集均方根误差(RMSEP)为0.404%;利用单粒玉米种子胚朝下的光谱信息建立的改进RF模型训练集R为0.966,RMSEC为0.100%,测试集R为0.793,RMSEP为0.544%。实验结果表明:改进RF的泛化能力和预测精度明显优于RF和AdaBoost算法;种胚朝上的单粒玉米种子水分含量检测模型优于种胚朝下的模型。高光谱检测技术结合集成学习算法建立的玉米种子水分检测模型预测精度高,稳健性好。

  • 相关文献

[1]单粒玉米种子水分近红外快速无损测定模型研究. 张乐,吴静珠,李江波,刘翠玲,孙晓荣,余乐. 2020

[2]基于动态集成的黄瓜叶部病害识别方法. 王志彬,王开义,王书锋,王晓锋,潘守慧. 2017

[3]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[4]基于太赫兹技术的植物叶片水分检测初步研究. 龙园,赵春江,李斌. 2017

[5]冬小麦冻害胁迫高光谱分析与冻害严重度反演. 王慧芳,王纪华,董莹莹,顾晓鹤,霍治国. 2014

[6]不同条件下夏玉米冠层反射光谱响应特性的研究. 谭昌伟,郭文善,朱新开,李春燕,王纪华. 2008

[7]指示冬小麦条锈病严重度的两个新的红边参数. 王圆圆,陈云浩,李京,黄文江. 2007

[8]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

[9]不同尺度冬小麦氮素遥感监测方法及其应用研究. 鲍艳松,王纪华,刘良云,李小文,李翔,黄文江,唐怡. 2007

[10]利用高光谱红边与黄边位置距离识别小麦条锈病. 蒋金豹,陈云浩,黄文江. 2010

[11]不同氮素水平下超高产夏玉米冠层的高光谱特征. 陈国庆,齐文增,李振,王纪华,董树亭,张吉旺,刘鹏. 2010

[12]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[13]基于EFAST方法的苹果叶片叶绿素含量估算. 杨福芹,沙从术,冯海宽,韩瑞芳,徐平. 2017

[14]利用新型光谱指数改善冬小麦估产精度. 刘良云,王纪华,黄文江,赵春江,张兵,童庆禧. 2004

[15]基于小波变换与偏最小二乘耦合模型估测北方潮土有机质含量. 王延仓,杨贵军,朱金山,顾晓鹤,徐鹏,廖钦洪. 2014

[16]利用反射光谱及模拟多光谱数据定量反演北方潮土有机质含量. 王延仓,顾晓鹤,朱金山,龙慧灵,徐鹏,廖钦洪. 2014

[17]表征冬小麦倒伏强度敏感冠层结构参数筛选及光谱诊断模型. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓. 2019

[18]冬小麦叶片光合特征高光谱遥感估算模型的比较研究. 张卓,龙慧灵,王崇倡,杨贵军. 2019

[19]基于氮素叶绿素关系的冬小麦籽粒蛋白质含量高光谱反演. 王妍,徐新刚,郭文善,王芊,谭昌伟,李存军. 2013

[20]烤烟成熟鲜烟叶生化组分高光谱估算方法筛选. 李佛琳,赵春江,刘良云,王纪华,曹卫星. 2006

作者其他论文 更多>>