您好,欢迎访问北京市农林科学院 机构知识库!

基于冬小麦筋型修正系数的籽粒蛋白质含量遥感预测

文献类型: 中文期刊

作者: 赵春奇 1 ; 李振海 1 ; 杨贵军 1 ; 段丹丹 1 ; 赵钰 1 ; 杨武德 1 ;

作者机构: 1.山西农业大学农学院;国家农业信息化工程技术研究中心;农业部农业信息技术重点实验室;北京市农业物联网工程技术研究中心

关键词: 冬小麦;筋型;植被指数;植株氮浓度;籽粒蛋白质含量

期刊名称: 麦类作物学报

ISSN: 1009-1041

年卷期: 2020 年 03 期

页码: 373-380

收录情况: 北大核心 ; CSCD

摘要: 为优化冬小麦籽粒蛋白含量(GPC)的遥感预测模型,基于2012-2013、2014-2015和2017-2018年冬小麦生长季的田间试验,以植株氮代谢过程及GPC形成规律为依据,构建"植被指数(VI)-农学参数-GPC"的半机理模型,并在此基础上通过引入筋型修正系数λ优化"PNC-GPC"模型,修正小麦筋型对模型的影响,进一步提高"VI-PNC-GPC"模型的精度。结果表明,选取的VI与植株氮浓度(PNC)均极显著相关,其中比值光谱植被指数(RSI)与PNC的相关性最高,相关系数达到0.777,建立的PNC估算模型的决定系数(r~2)达到0.604,验证nRMSE为9.93%;构建的PNC-GPC模型为GPC=(5.843×PNC+4.847)×λ,r~2=0.792,验证nRMSE为7.43%;对比不考虑冬小麦筋型的"RSI-PNC-GPC"模型,其r~2提高了0.145,验证的nRMSE降低了0.86%。综合来看,以PNC为中间变量,通过考虑不同筋型的差异构建的筋型修正系数可以更加准确地预测GPC。

  • 相关文献

[1]基于生长度日的冬小麦植株氮浓度监测. 赵钰,李振海,杨贵军,王建雯,段丹丹,杨武德,冯美臣. 2019

[2]基于氮素运转原理和GRA-PLS算法的冬小麦籽粒蛋白质含量遥感预测. 李振海,徐新刚,金秀良,张竞成,宋晓宇,宋森楠,杨贵军,王纪华. 2014

[3]基于TM遥感的冬小麦籽粒蛋白质含量监测预报. 李卫国,王纪华,黄文江. 2009

[4]基于叶片及冠层叶绿素参数的冬小麦籽粒蛋白质含量预测研究. 宋晓宇,王纪华,杨贵军,崔贝,常红. 2014

[5]基于开花期氮素营养指标的冬小麦籽粒蛋白质含量遥感预测. 屈莎,李振海,邱春霞,杨贵军,宋晓宇,陈召霞,刘畅. 2017

[6]基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型. 李卫国,王纪华,赵春江,刘良云,宋晓宇,童庆禧. 2008

[7]基于ISODATA的冬小麦籽粒蛋白质含量遥感分级监测. 李卫国,李正金,王纪华,黄文江,郭文善. 2009

[8]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[9]基于高光谱响应与模拟模型的冬小麦变量追氮研究. 蒋阿宁,黄文江,王纪华,刘克礼,赵春江,刘良云. 2007

[10]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[11]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[12]基于无人机高光谱和数码影像数据的冬小麦生物量反演. 李天驰,冯海宽,朱贝贝,范园园,金丽妍,成倩,李倩雨. 2020

[13]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[14]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[15]扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 张东彦,宋晓宇,马智宏,杨贵军,黄文江,王纪华. 2010

[16]基于高光谱维数约简与植被指数估算冬小麦叶面积指数的比较. 付元元,杨贵军,冯海宽,徐新刚,宋晓宇,王纪华. 2012

[17]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[18]利用无人机高光谱估算冬小麦叶绿素含量. 冯海宽,陶惠林,赵钰,杨福芹,樊意广,杨贵军. 2022

[19]基于冠层光谱植被指数的冬小麦作物系数估算. 李贺丽,罗毅,赵春江,杨贵军. 2013

[20]结合HJ1A/B卫星数据和生态因子的籽粒品质监测. 王大成,张东彦,李宇飞,秦其明,王纪华,范闻捷,陈诗琳. 2013

作者其他论文 更多>>