文献类型: 中文期刊
作者: 刘杨 1 ; 张涵 2 ; 冯海宽 1 ; 孙乾 1 ; 黄珏 3 ; 王娇娇 1 ; 杨贵军 1 ;
作者机构: 1.农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心
2.University of New South Wales
3.山东科技大学测绘科学与工程学院
关键词: 马铃薯;无人机;成像高光谱;随机蛙跳;高斯过程回归;地上生物量
期刊名称: 光谱学与光谱分析
年卷期: 2021 年 009 期
页码: 2657-2664
收录情况: EI ; 北大核心 ; CSCD
摘要: 地上生物量(AGB)的精准监测是农田生产管理的重要环节,因此快速准确地估算AGB,对于精准农业的发展十分重要。传统上,获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变得困难。无人机高光谱遥感因具有机动性强、光谱分辨率高和图谱合一的优势,成为当前估算大面积作物AGB最有效的技术手段。该研究通过无人机平台搭载成像高光谱传感器分别获取马铃薯块茎形成期、块茎增长期、淀粉积累期的冠层高光谱影像以及利用烘干称重法获取相应生育期实测AGB数据。然后,采用相关性分析法(CAM)、随机蛙跳算法(RFM)和高斯过程回归波长分析工具(GPR-BAT)分别筛选冠层原始光谱(COS)和一阶导数光谱(FDS)的敏感波长,结合偏最小二乘回归(PLSR)和高斯过程回归(GPR)构建各生育期的AGB估算模型,并对比不同模型的估测效果。结果显示:(1)基于同种方法分别筛选COS和FDS的特征波长,结合2种回归技术估算AGB的效果均从块茎形成期到淀粉积累期由好变差。(2)基于FDS分别通过3种方法筛选的特征波长,通过同种回归技术构建的模型效果要优于基于COS的相应效果。(3)基于COS和FDS使用CAM, RFM和GPR-BAT方法筛选的特征波长个数在块茎形成期分别为28, 12, 6个和12, 23, 10个,在块茎增长期分别为32, 8, 2个和18, 28, 4个,在淀粉积累期分别为30, 15, 3个和21, 33, 5个。(4)各生育期基于COS和FDS通过3种方法筛选的敏感波长估算AGB效果由高到低依次均为GPR-BAT, RFM和CAM。(5)各生育期基于FDS通过GPR-BAT方法筛选的敏感波长,结合PLSR建立的模型精度更高、稳定性更强,R2分别为0.67, 0.73和0.65, NRMSE分别为16.63%, 15.84%和20.81%。研究表明利用无人机高光谱成像技术可以准确地估算AGB,这为实现马铃薯作物长势动态监测,提供科学指导和参考。
- 相关文献
[1]基于无人机高光谱影像的马铃薯株高和地上生物量估算. 刘杨,冯海宽,黄珏,孙乾,杨福芹,杨贵军. 2021
[2]利用无人机数码影像估算马铃薯地上生物量. 刘杨,黄珏,孙乾,冯海宽,杨贵军,杨福芹. 2021
[3]基于无人机高光谱分数阶微分的马铃薯地上生物量估算. 刘杨,冯海宽,孙乾,杨福芹,杨贵军. 2020
[4]不同分辨率无人机数码影像的马铃薯地上生物量估算研究. 刘杨,冯海宽,孙乾,杨福芹,杨贵军. 2021
[5]基于小波分析的马铃薯地上生物量估算. 刘杨,孙乾,冯海宽,杨福芹. 2021
[6]基于无人机高光谱特征参数和株高估算马铃薯地上生物量. 刘杨,冯海宽,黄珏,杨福芹,吴智超,孙乾,杨贵军. 2021
[7]无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量. 陈鹏,冯海宽,李长春,杨贵军,杨钧森,杨文攀,刘帅兵. 2019
[8]基于无人机数码影像的马铃薯生物量估算. 刘杨,冯海宽,黄珏,孙乾,杨福芹. 2020
[9]利用光谱空间特征估算马铃薯植株氮含量. 樊意广,冯海宽,刘杨,边明博,赵钰,杨贵军,钱建国. 2023
[10]基于无人机成像高光谱估算马铃薯植株氮含量. 樊意广,冯海宽,刘杨,龙慧灵,杨贵军,钱建国. 2023
[11]基于冠层光谱特征和株高的马铃薯植株氮含量估算. 樊意广,冯海宽,刘杨,边明博,孟炀,杨贵军. 2022
[12]基于成像高光谱的苹果树叶片病害区域提取方法研究. 胡荣明,魏曼,竞霞,王纪华. 2012
[13]应用近地成像高光谱估算玉米叶绿素含量. 张东彦,刘镕源,宋晓宇,徐新刚,黄文江,朱大洲,王纪华. 2011
[14]基于近地面高光谱影像的冬小麦日光诱导叶绿素荧光提取与分析. 王冉,刘志刚,冯海宽,杨沛琦,王庆山,倪卓娅. 2013
[15]基于红边位置提取验证成像与非成像高光谱数据的一致性. 王大成,张东彦,赵晋陵,李存军,朱大洲,黄文江,李宇飞,杨小冬. 2011
[16]基于多角度成像数据的大豆冠层叶绿素密度反演. 张东彦,Coburn Craig,赵晋陵,王秀,王之杰,梁栋. 2013
[17]基于可见/近红外高光谱成像技术的西甜瓜糖度检测. 何洪巨,胡丽萍,李武,陈兴海,黄宇. 2016
[18]夏玉米涝灾无人机LIDAR监测研究. 甘平,董燕生,孙林,廖永丰,郭清,吕雪锋,何飞. 2016
[19]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020
[20]温带草甸草原不同植物功能类群对模拟干旱的抵抗力与恢复力. 陈姿廷,鲁绍伟,李少宁,赵娜,徐晓天. 2023
作者其他论文 更多>>
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
基于Sentinel数据与多特征学习的大豆种植面积提取
作者:段承君;杜晓初;龙慧灵;梅新;杨贵军;张有智
关键词:大豆;种植面积;机器学习;Google Earth Engine
-
秦岭植被生态空天地遥感监测体系与平台建设构思
作者:张静;杨贵军;李振洪;雷蕾;刘淼;高美玲
关键词:遥感;植被;监测体系;生态环境;时空演变
-
基于高光谱和深度学习的水稻秸秆覆盖度遥感估算
作者:岳继博;李婷;宋洁;田庆久;刘杨;冯海宽
关键词:卷积神经网络;水稻秸秆覆盖度;深度学习;迁移学习
-
多源遥感数据耦合CBA-Wheat模型的冬小麦生物量估算研究
作者:王士俊;刘苗;赵钰;柳昭宇;刘修宇;冯海宽;隋学艳;李振海
关键词:冬小麦;地上生物量;遗传算法;CBA-Wheat;多源数据;EVI2;Sentinel-2;遥感
-
Spiking-Hybrid方法与机器学习结合的冬小麦LAI反演
作者:李平平;王夏军;王来刚;杨贵军;马园园;孙贺光;郑淳恺;宋晓宇
关键词:小麦;高光谱;Spiking-Hybrid方法;PROSAIL;少样本
-
叶片多理化参数的高光谱遥感与深度学习估算
作者:岳继博;冷梦蝶;田庆久;郭伟;刘杨;冯海宽;乔红波
关键词:深度学习;高光谱遥感;叶片蛋白质含量;叶片叶绿素含量;叶片类胡萝卜素含量