您好,欢迎访问北京市农林科学院 机构知识库!

病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究

文献类型: 中文期刊

作者: 蒋金豹 1 ; 陈云浩 1 ; 黄文江 2 ;

作者机构: 1.北京师范大学资源学院

2.国家农业信息化工程技术研究中心

关键词: 冬小麦;病害胁迫;高光谱;色素含量;估测模型

期刊名称: 光谱学与光谱分析

ISSN: 1000-0593

年卷期: 2007 年 27 卷 07 期

页码: 117-121

收录情况: EI ; SCI ; 北大核心 ; CSCD

摘要: 通过人工田间诱发小麦条锈病,在不同生育期测定染病冬小麦冠层光谱和相应叶片的色素含量。把冠层光谱数据、一阶微分数据与相应的叶片色素含量数据分别进行相关分析,采用单变量线性和非线性回归技术,选取部分样本建立小麦的色素含量估测模型,并利用其余的样本对模型进行检验,结果表明绿边内一阶微分总和(SDg)与红边内一阶微分总和(SDr)的归一化值为变量的线性模型是估测色素含量的最佳模型,其估测叶绿素a,叶绿素b和胡萝卜素含量的相对误差分别为17.0%,16.3%和12.4%。该研究表明可用高光谱信息估测冠层叶片色素含量,且估测精度较高。文章的研究结果对利用高光谱遥感监测农作物长势以及病害影响都具有实际应用价值。

  • 相关文献

[1]条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型. 蒋金豹,陈云浩,黄文江,李京. 2008

[2]用高光谱微分指数监测冬小麦病害的研究. 蒋金豹,陈云浩,黄文江. 2007

[3]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

[4]表征冬小麦倒伏强度敏感冠层结构参数筛选及光谱诊断模型. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓. 2019

[5]最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究. 谢巧云,黄文江,梁栋,彭代亮,黄林生,宋晓宇,张东彦,杨贵军. 2014

[6]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020

[7]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[8]冬小麦条锈病的光谱特征及遥感监测. 王纪华,黄文江,黄义德,赵春江,万安民. 2003

[9]冬小麦条锈病生理变化及其遥感机理. 黄义德,黄文江,刘良云,王纪华,万安民. 2004

[10]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018

[11]利用高光谱微分指数进行冬小麦条锈病病情的诊断研究. 蒋金豹,陈云浩,黄文江. 2007

[12]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[13]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019

[14]冬小麦生育前期LAI高光谱反演研究. 何小安,李存军,周静平,赵叶,葛艳. 2019

[15]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[16]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[17]基于冬小麦冠层高光谱的干生物量监测. 赵钰,李振海,杨贵军,王建雯,段丹丹,杨武德,冯美臣. 2019

[18]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018

[19]扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 张东彦,宋晓宇,马智宏,杨贵军,黄文江,王纪华. 2010

[20]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

作者其他论文 更多>>