文献类型: 中文期刊
作者: 刘帅兵 1 ; 金秀良 2 ; 冯海宽 3 ; 聂臣巍 2 ; 白怡 2 ; 程明瀚 2 ;
作者机构: 1.武汉大学遥感信息工程学院
2.中国农业科学院作物科学研究所
3.北京市农林科学院信息技术研究中心
关键词: 玉米病害;叶面积指数;无人机;高光谱;多光谱
期刊名称: 农业机械学报
ISSN: 1000-1298
年卷期: 2023 年 003 期
页码: 246-258
收录情况: EI ; 北大核心 ; CSCD
摘要: 为了在病害发生条件下进行玉米LAI的遥感估算,针对41个不同抗性的玉米自交系品种,通过人工接种方法,获得了不同病害严重程度(1~9级)的LAI数据,同时采集了地面高光谱和无人机多光谱数据,构建了K近邻算法、支持向量机、梯度提升分类树和决策分类树分类模型对病害进行分类,对玉米种质资源抗病性进行了划分。基于不同玉米病害胁迫程度分类结果,采用随机森林回归、梯度提升回归树、极端梯度增强算法、轻量梯度提升机4种机器学习模型对玉米LAI进行反演,讨论了不同模型在病害胁迫下的鲁棒性。研究结果表明,对不同生育期玉米病害程度进行划分,基于地面高光谱识别精度分别为84.72%(梯度提升分类树)、47.67%(支持向量机)、55.05%(K近邻算法)、83.02%(决策分类树)。基于病害分类结果,本文利用无人机多光谱数据估算了不同病情等级胁迫下的玉米LAI。构建了4种集成学习模型对不同病情等级的LAI进行估算,4个LAI反演模型的总体反演精度(rRMSE)分别为:19.11%(梯度提升回归树)、15.94%(轻量梯度提升机)、14.51%(随机森林回归)和15.45%(极端梯度增强算法)。其中极端梯度增强算法对病害胁迫的普适性最好,不同病害等级下的反演精度rRMSE为15.19%(轻微)、17.46%(中等)、9.12%(严重)和9.63%(不抗病)。LAI反演模型普遍在病害早期和中期(病情等级1~7)对玉米LAI估算精度相差不大。但是对病情极其严重的玉米样本,其玉米LAI估算结果精度差异较大,田间不同病情等级胁迫会影响玉米LAI的准确估算。
- 相关文献
[1]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018
[2]利用反射光谱及模拟多光谱数据定量反演北方潮土有机质含量. 王延仓,顾晓鹤,朱金山,龙慧灵,徐鹏,廖钦洪. 2014
[3]无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量. 陈鹏,冯海宽,李长春,杨贵军,杨钧森,杨文攀,刘帅兵. 2019
[4]基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 魏鹏飞,徐新刚,李中元,杨贵军,李振海,冯海宽,陈帼,范玲玲,王玉龙,刘帅兵. 2019
[5]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019
[6]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020
[7]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023
[8]利用无人机高光谱影像的冬小麦氮含量监测. 冯海宽,樊意广,陶惠林,杨福芹,杨贵军,赵春江. 2023
[9]基于无人机成像高光谱估算马铃薯植株氮含量. 樊意广,冯海宽,刘杨,龙慧灵,杨贵军,钱建国. 2023
[10]最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究. 谢巧云,黄文江,梁栋,彭代亮,黄林生,宋晓宇,张东彦,杨贵军. 2014
[11]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020
[12]冬小麦叶面积指数遥感反演方法比较研究. 谢巧云,黄文江,蔡淑红,梁栋,彭代亮,张清,黄林生,杨贵军,张东彦. 2014
[13]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018
[14]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020
[15]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017
[16]基于无人机遥感影像的大豆叶面积指数反演研究. 高林,杨贵军,王宝山,于海洋,徐波,冯海宽. 2015
[17]基于多源遥感数据的大豆叶面积指数估测精度对比. 高林,李长春,王宝山,杨贵军,王磊,付奎. 2016
[18]基于无人机数码影像的冬小麦叶面积指数探测研究. 高林,杨贵军,李红军,李振海,冯海宽,王磊,董锦绘,贺鹏. 2016
[19]基于无人机高光谱遥感的冬小麦叶面积指数反演. 高林,杨贵军,于海洋,徐波,赵晓庆,董锦绘,马亚斌. 2016
[20]基于无人机数码影像的大豆育种材料叶面积指数估测. 李长春,牛庆林,杨贵军,冯海宽,刘建刚,王艳杰. 2017
作者其他论文 更多>>
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
融合多因子的无人机高光谱遥感冬小麦产量估算
作者:谢瑞;杨福芹;冯海宽;李天驰
关键词:冬小麦;无人机;高光谱;植被指数;氮营养指数
-
利用光谱空间特征估算马铃薯植株氮含量
作者:樊意广;冯海宽;刘杨;边明博;赵钰;杨贵军;钱建国
关键词:无人机;马铃薯;植株氮含量;植被指数;高频信息
-
不同生育期冬小麦植株氮含量遥感反演方法比较
作者:杨福芹;李蕊;冯海宽;李天驰;王果
关键词:冬小麦;植株氮含量;多元线性回归;逐步回归;偏最小二乘回归
-
基于无人机影像与GA-BP神经网络的生物量估算
作者:杨福芹;李天驰;冯海宽;解鹏;陈超;高磊磊
关键词:冬小麦;生物量;变量投影重要性;灰色关联;遗传算法;BP神经网络
-
基于冠层光谱和覆盖度的马铃薯叶片钾含量估算方法
作者:马彦鹏;边明博;樊意广;陈志超;杨贵军;冯海宽
关键词:马铃薯;叶片钾含量;冠层覆盖度;RGB影像;冠层光谱特征
-
利用无人机高光谱影像的冬小麦氮含量监测
作者:冯海宽;樊意广;陶惠林;杨福芹;杨贵军;赵春江
关键词:无人机;冬小麦;高光谱;氮含量;逐步回归;光谱特征参数