您好,欢迎访问北京市农林科学院 机构知识库!

基于深度学习与多尺度特征融合的烤烟烟叶分级方法

文献类型: 中文期刊

作者: 鲁梦瑶 1 ; 周强 1 ; 姜舒文 1 ; 王聪 1 ; 陈栋 1 ; 陈天恩 1 ;

作者机构: 1.国家农业信息化工程技术研究中心;安徽皖南烟叶有限责任公司;农芯(南京)智慧农业研究院

关键词: 烟叶分级;深度学习;图像分类;特征融合;特征金字塔网络;SE模块

期刊名称: 中国农机化学报

ISSN: 2095-5553

年卷期: 2022 年 01 期

页码: 158-166

收录情况: 北大核心

摘要: 为实现烤烟等级的快速准确识别,降低人工分级中主观因素对分级结果的影响,提高烟叶分级的准确性和一致性,提出一种基于烤烟RGB图像和深度学习的多尺度特征融合的烟叶图像等级分类方法,采用ResNet50提取烟叶图像特征,并引入基于注意力机制的SE模块(压缩激发模块),增强不同通道特征的重要程度;同时,采用FPN(特征金字塔网络)对提取的由浅及深不同层级的烟叶特征进行融合,以实现烟叶多尺度特征的表达。采集皖南地区6 068个烤烟的正面和背面图像用于建模和分析。结果表明,提出的烟叶分级方法的分级正确率比经典CNN(卷积神经网络)高出5.21%,分级模型在新批次7个等级烟叶上的分级正确率为80.14%,相邻等级的分级正确率为91.50%。因此,采用RGB图像结合深度学习技术可实现烤烟烟叶等级的良好识别,可为烤烟烟叶收购等级评价提供一种新方法。

  • 相关文献

[1]基于卷积神经网络的田间麦穗检测方法研究. 张合涛,赵春江,王传宇,郭新宇,李大壮,苟文博. 2023

[2]一种基于高光谱图像的熟牛肉TVB-N含量预测方法. 田卫新,何丹丹,杨东,陆安祥. 2016

[3]用于高光谱图像分类的归一化光谱指数的构建与应用(英文). 张东彦,赵晋陵,黄林生,马雯萩. 2014

[4]RADARSAT-2全极化SAR数据地表覆盖分类. 程千,王崇倡,张继超. 2015

[5]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022

[6]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[7]基于迁移学习和金字塔卷积网络的河蟹个体图像识别方法研究. 冯裕清,杨信廷,徐大明,罗娜,陈枫,孙传恒. 2022

[8]基于Faster R-CNN的美国白蛾图像识别模型研究. 薛大暄,张瑞瑞,陈立平,陈梅香,徐刚. 2020

[9]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019

[10]基于云原生技术的土壤墒情监测系统设计与应用. 于景鑫,杜森,吴勇,钟永红,张钟莉莉,郑文刚,李文龙. 2020

[11]基于深度学习的跨年龄人脸识别. 孙文斌,王荣,孙连烛,林源松. 2022

[12]采用组合增强的YOLOX-ViT协同识别温室内番茄花果. 吕志远,张付杰,魏晓明,黄媛,李晶晶,张钟莉莉. 2023

[13]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

[14]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[15]基于Faster R-CNN网络的茶叶嫩芽检测. 朱红春,李旭,孟炀,杨海滨,徐泽,李振海. 2022

[16]基于WDNN的温室多特征数据融合方法研究. 孙耀杰,蔡昱,张馨,薛绪掌,郑文刚,乔晓军. 2019

[17]基于注意力机制的农业文本命名实体识别. 赵鹏飞,赵春江,吴华瑞,王维. 2021

[18]基于偏最小二乘法和深度学习的近红外糖度预测. 彭发,王震,刘双喜,王金星,杨化伟. 2021

[19]番茄非接触式单果质量估测方法. 许伟浩,李斌,林森,郑书河,郎冲冲,李涛,董创,郭文忠. 2021

[20]轻小型无人机遥感及其行业应用进展. 郭庆华,胡天宇,刘瑾,金时超,肖青,杨贵军,高显连,许强,谢品华,彭炽刚,闫利. 2021

作者其他论文 更多>>