您好,欢迎访问北京市农林科学院 机构知识库!

基于生长度日的冬小麦植株氮浓度监测

文献类型: 中文期刊

作者: 赵钰 1 ; 李振海 1 ; 杨贵军 1 ; 王建雯 1 ; 段丹丹 1 ; 杨武德 1 ; 冯美臣 1 ;

作者机构: 1.山西农业大学农学院;国家农业信息化工程技术研究中心;农业部农业信息技术重点实验室;北京市农业物联网工程技术研究中心

关键词: 冬小麦;植被指数;生长度日;植株氮浓度;光谱饱和

期刊名称: 山西农业科学

ISSN: 1002-2481

年卷期: 2019 年 07 期

页码: 1134-1138

摘要: 光谱饱和现象是作物光谱监测中广泛存在的问题。基于连续3 a田间试验,对拔节期、挑旗期和开花期的植被指数(VI)和当季估计指数(INSEI)分别对植株氮浓度(PNC)进行监测,并利用独立生长季数据对模型验证。结果表明,植被指数在低PNC条件下发生饱和现象,且受作物生长阶段的影响;基于INSEI的光谱监测模型有效降低了作物生长阶段对于PNC监测的影响,其中,INSEINDVI的PNC监测模型精度最佳,建模集R~2和RMSE分别为0.75和0.36%,验证集R~2和RMSE分别为0.72和0.52%。基于生长度日的植株氮浓度监测在一定程度上克服了光谱饱和现象,为冬小麦长势监测提供了理论和技术支持。

  • 相关文献

[1]基于冬小麦筋型修正系数的籽粒蛋白质含量遥感预测. 赵春奇,李振海,杨贵军,段丹丹,赵钰,杨武德. 2020

[2]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[3]基于高光谱响应与模拟模型的冬小麦变量追氮研究. 蒋阿宁,黄文江,王纪华,刘克礼,赵春江,刘良云. 2007

[4]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[5]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[6]基于无人机高光谱和数码影像数据的冬小麦生物量反演. 李天驰,冯海宽,朱贝贝,范园园,金丽妍,成倩,李倩雨. 2020

[7]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[8]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[9]扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 张东彦,宋晓宇,马智宏,杨贵军,黄文江,王纪华. 2010

[10]基于高光谱维数约简与植被指数估算冬小麦叶面积指数的比较. 付元元,杨贵军,冯海宽,徐新刚,宋晓宇,王纪华. 2012

[11]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[12]利用无人机高光谱估算冬小麦叶绿素含量. 冯海宽,陶惠林,赵钰,杨福芹,樊意广,杨贵军. 2022

[13]基于冠层光谱植被指数的冬小麦作物系数估算. 李贺丽,罗毅,赵春江,杨贵军. 2013

[14]东北地区春玉米生育期内气候资源变化特征. 淮贺举,孙宁,史磊刚,李奇峰,胡海棠,陶欢,李存军. 2020

[15]京研迷你2号黄瓜生长发育及产量性状分析. 钱婷婷,于喜燕,郭新宇,杨月英,陆声链. 2010

[16]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[17]自主研制的田间成像高光谱仪农学建模研究. 黄文江,张东彦,马智宏,王秋平. 2010

[18]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[19]高光谱遥感在植被理化信息提取中的应用动态. 谭昌伟,王纪华,黄文江,刘良云,黄义德,严伟才. 2005

[20]估测作物冠层生物量的新植被指数的研究. 陈鹏飞,Nicolas Tremblay,王纪华,Philippe Vigneault,黄文江,李保国. 2010

作者其他论文 更多>>