您好,欢迎访问北京市农林科学院 机构知识库!

基于植被指数的叶绿素密度遥感反演建模与适用性研究

文献类型: 中文期刊

作者: 张苏 1 ; 刘良云 2 ; 黄文江 3 ;

作者机构: 1.中国科学院遥感与数字地球研究所

2.西安科技大学测绘科学与技术学院

3.国家农业信息化工程技术研究中心

关键词: 高光谱;植被指数;冠层叶绿素密度

期刊名称: 遥感信息

ISSN: 1000-3177

年卷期: 2013 年 28 卷 03 期

页码: 94-101,111

收录情况: CSCD

摘要: 利用遥感数据反演叶绿素密度是对作物长势进行评估的有效手段。本文利用实测冬小麦和夏玉米两种作物、不同生育期的冠层光谱和叶片叶绿素含量数据,收集了14种光谱指数,分析各种光谱指数的叶绿素密度遥感模型的精度。优选了其中的8种植被光谱指数,建立了植被指数与叶绿素密度之间的回归模型,并利用不同生育期小麦数据和玉米数据对各模型进行验证,分析评价它们对不同生育期、不同作物类型的适用性。研究发现:利用SRI、RVI I、R-M和MTCI 4种植被指数所建模型对冬小麦不同生育期数据适用性较好,各生育期冠层叶绿素密度反演相对误差优于27%。其中,MTCI模型对不同作物类型的适用性最好,冠层叶绿素密度反演相对误差优于35%。

  • 相关文献

[1]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[2]用神经网络和高光谱植被指数估算小麦生物量. 王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳. 2008

[3]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[4]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[5]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[6]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[7]基于连续小波变换的冬小麦叶片最大净光合速率遥感估算. 苗梦珂,王宝山,李长春,龙慧灵,杨贵军,冯海宽,翟丽婷,刘明星,吴智超. 2020

[8]扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 张东彦,宋晓宇,马智宏,杨贵军,黄文江,王纪华. 2010

[9]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023

[10]用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度. 蒋金豹,陈云浩,黄文江. 2010

[11]无人机观测时间对玉米冠层叶绿素密度估算的影响. 周丽丽,冯海宽,聂臣巍,许晓斌,刘媛,孟麟,薛贝贝,明博,梁齐云,苏涛,金秀良. 2024

[12]自主研制的田间成像高光谱仪农学建模研究. 黄文江,张东彦,马智宏,王秋平. 2010

[13]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[14]高光谱遥感在植被理化信息提取中的应用动态. 谭昌伟,王纪华,黄文江,刘良云,黄义德,严伟才. 2005

[15]估测作物冠层生物量的新植被指数的研究. 陈鹏飞,Nicolas Tremblay,王纪华,Philippe Vigneault,黄文江,李保国. 2010

[16]水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律研究. 唐延林,王纪华,黄敬峰,王人潮,何秋霞. 2003

[17]基于CASI高光谱数据的作物叶面积指数估算. 唐建民,廖钦洪,刘奕清,杨贵军,冯海宽,王纪华. 2015

[18]基于多载荷无人机遥感的大豆地上鲜生物量反演. 陆国政,杨贵军,赵晓庆,王艳杰,李长春,张小燕. 2017

[19]基于氮素运转原理和GRA-PLS算法的冬小麦籽粒蛋白质含量遥感预测. 李振海,徐新刚,金秀良,张竞成,宋晓宇,宋森楠,杨贵军,王纪华. 2014

[20]模拟多光谱卫星传感器数据的冬小麦白粉病遥感监测. 卫黎光,蒋金豹,杨贵军,聂臣巍,袁琳,黄文江,张竞成. 2014

作者其他论文 更多>>