A Prediction Method of Seedling Transplanting Time with DCNN-LSTM Based on the Attention Mechanism
文献类型: 外文期刊
作者: Zhu, Huaji 1 ; Liu, Chang 1 ; Wu, Huarui 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Minist Agr & Rural Affairs, Key Lab Digital Village Technol, Beijing 100125, Peoples R China
关键词: transplanting time; prediction model; deep convolutional neural network; long and short-term memory network; attention mechanism
期刊名称:AGRONOMY-BASEL ( 影响因子:3.949; 五年影响因子:4.117 )
ISSN:
年卷期: 2022 年 12 卷 7 期
页码:
收录情况: SCI
摘要: To improve the production efficiency and reduce the labor cost of seedling operations, cabbage was selected as the research subject, and a novel approach based on the attention mechanism combining the deep convolutional neural network (DCNN) and long short-term memory (LSTM) is proposed. First, the cabbage growth data and environmental monitoring data were normalized, and input samples were obtained by sliding the time window. Then, the DCNN and the LSTM were used to extract the spatial feature information and temporal correlation of the samples, respectively. At the same time, the attention mechanism was used to set the weight coefficients of different feature information and highlight the role of the main features of the sample in the model, thereby improving the prediction accuracy. By analyzing the experimental data collected by the Shandong Seedling Plant, the DCNN-LSTM method based on the proposed attention mechanism achieved good prediction results, providing experience for the engineering application of decision-making regarding seedling transplanting time. The experimental data showed that the mean absolute error, root-mean-square error, mean absolute percentage error, and symmetric mean absolute percentage error of the prediction results of this method were 0.356, 0.507, 0.157, and 0.082, respectively. Compared with the CNN, LSTM, LSTM-Attention and CNN-LSTM models, this model showed higher prediction accuracy.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change
-
Advancements in SELEX Technology for Aptamers and Emerging Applications in Therapeutics and Drug Delivery
作者:Feng, Liangjie;Sun, Yu;Yu, Yang;Liu, Chang;Yang, Jing;Chen, Jin;Wang, Fengchao;Jia, Wenshen;Luan, Yunxia
关键词:aptamer; SELEX; targeted drug delivery; therapeutics; nanotechnology; conjugates
-
Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
作者:Tang, Boyi;Zhou, Jingping;Zhao, Chunjiang;Pan, Yuchun;Lu, Yao;Liu, Chang;Ma, Kai;Sun, Xuguang;Gu, Xiaohe;Tang, Boyi;Zhou, Jingping;Zhang, Ruifang
关键词:Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
-
A Joint Knowledge Extraction Model for Tobacco Pest and Disease Prevention Based on BERT plus BA plus CASREL
作者:Liu, Kehan;Zhang, Feng;Wu, Qiulan;Sun, Ziruo;Liu, Kehan;Sun, Xiang;Wu, Huarui;Sun, Ziruo;Zhang, Feng;Wu, Qiulan;Sun, Xiang;Wu, Huarui
关键词:Tobacco pest and disease prevention; knowledge extraction; joint knowledge extraction model; Tobacco pest and disease prevention; knowledge extraction; joint knowledge extraction model
-
Swin-Unet plus plus : a study on phenotypic parameter analysis of cabbage seedling roots
作者:Li, Hongda;Zhao, Yue;Bi, Zeyang;Li, Hongda;Hao, Peng;Wu, Huarui;Zhao, Chunjiang;Hao, Peng;Wu, Huarui;Zhao, Chunjiang
关键词:Cabbage; Root phenotype; Attention mechanism; Semantic segmentation; Unet; Residual networks
-
A high-efficiency regulation method for optimal root zone temperature under different nitrogen fertilizer using discrete curvature
作者:Li, Huimin;Gao, Pan;Sun, Zhangtong;Hu, Jin;Wei, Ziyuan;Lu, Miao;Li, Huimin;Wei, Ziyuan;Lu, Miao;Gao, Pan;Sun, Zhangtong;Hu, Jin;Gao, Pan;Wu, Huarui
关键词:U -chord curvature; Chlorophyll fluorescence; Suitable RZT range; Dynamic regulation; Hydroponic tomato seedlings



