Nondestructive detection of cadmium content in oilseed rape leaves under different silicon environments using deep transfer learning and Vis-NIR hyperspectral imaging
文献类型: 外文期刊
作者: Zhou, Xin 1 ; Liu, Yang 1 ; Zhao, Chunjiang 1 ; Sun, Jun 1 ; Shi, Lei 1 ; Cong, Sunli 1 ;
作者机构: 1.Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Jiangsu Univ, Key Lab Theory & Technol Intelligent Agr Machinery, Zhenjiang 212013, Peoples R China
5.Jiangsu Prov & Educ Minist Cosponsored Synergist I, Zhenjiang 212013, Peoples R China
关键词: Stacked denoising autoencoder; Deep learning; Transfer learning; Silicon environment; Cadmium hyperspectral imaging
期刊名称:FOOD CHEMISTRY ( 影响因子:9.8; 五年影响因子:9.7 )
ISSN: 0308-8146
年卷期: 2025 年 479 卷
页码:
收录情况: SCI
摘要: In this paper, a transfer stack denoising autoencoder (T-SDAE) algorithm is proposed to implement the migration of cadmium (Cd) prediction depth characteristic model of oilseed rape leaves in different silicon environments. Stacked denoising autoencoder (SDAE) algorithm was used to reduce dimensionality, and the most effective SDAE deep learning network was transferred to create the T-SDAE model. The results showed that SVR model using SDAE to extract depth features had the best prediction effect on Cd content in silicon-free, low-silicon and higher-silicon environments. Moreover, the coefficient of determination of prediction set (Rp2) were 0.9127, 0.9829 and 0.9606, respectively. Specifically, the Rp2 value of the T-SDAE-SVR optimal prediction set under different silicon environments is 0.9273, RMSEP is 0.01465 mg/kg, and RPD is 3.237. By integrating hyperspectral imaging technology with a deep transfer learning algorithm, accurate detection of various Cd contents in oilseed rape leaves is feasible under different silicon environments.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Micromorphology and Molecular Insights Into Glandular Trichomes in Two Different Thymes: Glandular Trichomes Formation Process and the Function of the Main Regulator TqHD1
作者:Zhang, Yanan;Miao, Jiahui;Sun, Meiyu;Shi, Lei;Zhang, Yanan;Zhang, Jinzheng;Miao, Jiahui;Sun, Guofeng;Bai, Hongtong;Xiao, Jianhua;Sun, Meiyu;Shi, Lei;Miao, Jiahui
关键词:capitate glandular trichomes; formation; peltate glandular trichomes; positive regulator; thyme
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Segmentation and Fractional Coverage Estimation of Soil, Illuminated Vegetation, and Shaded Vegetation in Corn Canopy Images Using CCSNet and UAV Remote Sensing
作者:Zhang, Shanxin;Yue, Jibo;Shu, Meiyan;Zhang, Shanxin;Wang, Xiaoyan;Feng, Haikuan;Feng, Haikuan;Liu, Yang
关键词:segmentation; digital camera; corn; deep learning



