Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning
文献类型: 外文期刊
作者: Li, Yinglun 1 ; Wen, Weiliang 1 ; Miao, Teng 4 ; Wu, Sheng 1 ; Yu, Zetao 2 ; Wang, Xiaodong 2 ; Guo, Xinyu 1 ; Zhao, Chunjiang 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
3.Jilin Agr Univ, Coll Resources & Environm, Changchun 130118, Peoples R China
4.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110161, Peoples R China
关键词: High throughput; Point cloud segmentation; Deep learning; Phenotype; Maize; Pipeline
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:6.757; 五年影响因子:6.817 )
ISSN: 0168-1699
年卷期: 2022 年 193 卷
页码:
收录情况: SCI
摘要: Point cloud segmentation is essential for studying the 3D spatial characteristics of plants. Notably, the segmentation accuracy greatly impacts subsequent 3D plant phenotypes extraction and 3D plant reconstruction. Automated segmentation approaches for plant point clouds are a bottleneck in achieving big data processing of 3D plant phenotypes. Using maize as a representative crop, this study developed DeepSeg3DMaize, a technique for plant point cloud segmentation that integrates high-throughput data acquisition and deep learning. A high throughput data acquisition platform for individual plants and an association mapping panel containing 515 inbred lines were used to construct the training dataset. Specifically, the MVS-Pheno platform was used to acquire high-throughput data, and Label3DMaize was used for point cloud data labeling. Based on the dataset, PointNet was introduced to implement stem-leaf and organ instance segmentation, and six phenotypes were extracted. According to the results, the mean precision and F1-Score of stem-leaf segmentation were 0.91 and 0.85, respectively. Meanwhile, the mean precision and F1-Score for organ instance segmentation were 0.94 and 0.93, respectively. The correlations of the six parameters (leaf length, leaf width, leaf inclination, leaf growth height, plant height, and stem height) extracted from the segmentation results with the measured values were 0.90, 0.82, 0.94, 0.95, 0.99, and 0.94, respectively. High-throughput data acquisition, automatic organ segmentation, and phenotypic data extraction form an automatic phenotypic data processing pipeline, which is practical for dealing with large amounts of initial data. Besides, it provides a systematic reference for the automated analysis of 3D phenotypic features at the individual plant level.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning



