A Machine Learning Framework Based on Extreme Gradient Boosting to Predict the Occurrence and Development of Infectious Diseases in Laying Hen Farms, Taking H9N2 as an Example
文献类型: 外文期刊
作者: Liu, Yu 1 ; Zhuang, Yanrong 3 ; Yu, Ligen 1 ; Li, Qifeng 1 ; Zhao, Chunjiang 1 ; Meng, Rui 1 ; Zhu, Jun 1 ; Guo, Xiaoli 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
2.Natl Innovat Ctr Digital Technol Anim Husb, Beijing 100097, Peoples R China
3.China Agr Univ, Coll Water Resources & Civil Engn, Beijing 100083, Peoples R China
关键词: H9N2 status; laying hen house; machine learning; predictive performance
期刊名称:ANIMALS ( 影响因子:3.0; 五年影响因子:3.2 )
ISSN: 2076-2615
年卷期: 2023 年 13 卷 9 期
页码:
收录情况: SCI
摘要: The H9N2 avian influenza virus has become one of the dominant subtypes of avian influenza virus in poultry and has been significantly harmful to chickens in China, with great economic losses in terms of reduced egg production or high mortality by co-infection with other pathogens. A prediction of H9N2 status based on easily available production data with high accuracy would be important and essential to prevent and control H9N2 outbreaks in advance. This study developed a machine learning framework based on the XGBoost classification algorithm using 3 months' laying rates and mortalities collected from three H9N2-infected laying hen houses with complete onset cycles. A framework was developed to automatically predict the H9N2 status of individual house for future 3 days (H9N2 status + 0, H9N2 status + 1, H9N2 status + 2) with five time frames (day + 0, day - 1, day - 2, day - 3, day - 4). It had been proven that a high accuracy rate > 90%, a recall rate > 90%, a precision rate of >80%, and an area under the curve of the receiver operator characteristic = 0.85 could be achieved with the prediction models. Models with day + 0 and day - 1 were highly recommended to predict H9N2 status + 0 and H9N2 status + 1 for the direct or auxiliary monitoring of its occurrence and development. Such a framework could provide new insights into predicting H9N2 outbreaks, and other practical potential applications to assist in disease monitor were also considerable.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
DASNet a dual branch multi level attention sheep counting network
作者:Chen, Yini;Gao, Ronghua;Li, Qifeng;Wang, Rong;Ding, Luyu;Li, Xuwen;Chen, Yini;Zhao, Hongtao;Li, Xuwen
关键词:
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



