您好,欢迎访问中国热带农业科学院 机构知识库!

Molecular characterization and expression analysis of cDNAs encoding four Rab and two Arf GTPases in the latex of Hevea brasiliensis

文献类型: 外文期刊

作者: Qin, Yunxia 1 ; Shi, Feng 1 ; Tang, Chaorong 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Minist Agr, Key Lab Rubber Biol, Danzhou 571737, Hainan, Peoples R China

2.Chinese Acad Trop Agr Sci, Rubber Res Inst, Danzhou 571737, Hainan, Peoples R China

3.Hainan Univ, Coll Agron, Danzhou 571737, Hainan, Peoples R China

关键词: Expression analysis;GTP-binding;Hevea brasiliensis;Latex;Rab and Arf

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In plants, Rab and Arf GTPases are key regulators of vesicle trafficking. To investigate whether these small GTPases (SG) play a role in the regulation of the regeneration of latex (the cytoplasm of the rubber-producing laticifer cell) in Hevea brasiliensis (Hevea hereafter), full-length cDNAs that encode four HbRab and two HbArf GTPases were cloned. The four HbRab proteins showed specific GTP-binding activity when expressed in Escherichia coli. Transcript expression of the six SG genes was investigated by real-time RT-PCR. All genes revealed to be expressed in each of the six Hevea tissues examined, but the expression patterns were different. Four genes, HbArf1, HbRab2, HbRab3 and HbRab4, displayed a preferential expression in latex. The expression of all genes was upregulated by the act of latex exploitation (tapping), and HbRab1 had the highest level of upregulation. Wounding markedly upregulated the expression of two SG genes (HbRab1 and HbArf2), and exogenous methyl jasmonate upregulated all six SG genes. Wounding might upregulate the expression of HbRab1 and HbArf2 through a jasmonic acid-mediated signaling pathway. None of the genes were markedly upregulated by Ethrel (an ethylene releaser and latex stimulator); instead, HbArf2 and HbRab4 were downregulated significantly after a 24 h treatment with Ethrel. This paper gives the first description of Rab and Arf GTPases in Hevea and provides clues for their involvement, HbRab1 in particular, in latex regeneration.

  • 相关文献

[1]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[2]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[3]Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones. Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Wang, Ying,Chen, Xiong-Ting,Peng, Shi-Qing. 2016

[4]Molecular characterization and expression analysis of two farnesyl pyrophosphate synthase genes involved in rubber biosynthesis in Hevea brasiliensis. Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong,Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong. 2017

[5]Cloning and molecular characterization of a cDNA encoding a small GTPase from Hevea brasiliensis. Li, H. L.,Guo, D.,Peng, S. Q.,Tian, W. M.. 2013

[6]Histochemical and immunohistochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2011

[7]Cloning and molecular characterization of a copper chaperone gene (HbCCH1) from Hevea brasiliensis. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[8]Molecular cloning and expression analysis of the mevalonate diphosphate decarboxylase gene from the latex of Hevea brasiliensis. Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong,Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong.

[9]Isolation and expression analysis of four members of the plasma membrane H+-ATPase gene family in Hevea brasiliensis. Zhu, Jiahong,Chang, Wenjun,Xu, Jing,Zhang, Zhili.

[10]Molecular characterization of a thioredoxin h gene (HbTRX1) from Hevea brasiliensis showing differential expression in latex between self-rooting juvenile clones and donor clones. Li, Hui-Liang,Lu, Hui-Zhong,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min.

[11]A Silver-Staining cDNA-AFLP Protocol Suitable for Transcript Profiling in the Latex of Hevea brasiliensis (Para Rubber Tree). Xiao, Xiaohu,Li, Heping,Tang, Chaorong,Xiao, Xiaohu,Li, Heping.

[12]Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Zeng, Rizhong.

[13]Ethephon Increases Rubber Tree Latex Yield by Regulating Aquaporins and Alleviating the Tapping-Induced Local Increase in Latex Total Solid Content. An, Feng,Xie, Guishui,Zou, Zhi,An, Feng,Kong, Lingxue,Rookes, James,Cahill, David,Cai, Xiuqing.

[14]Molecular cloning and characterization of an actin-depolymerizing factor gene in Hevea brasiliensis. Liu, Xianghong,Xia, Zhihui,Deng, Zhi,Liu, Xianghong,Chen, Chunliu,Tian, Weimin,Li, Dejun,Deng, Zhi,Chen, Chunliu,Tian, Weimin,Li, Dejun,Liu, Xianghong. 2010

[15]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[16]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[17]Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Peng, Zheng,Kong, Ling Xue,Li, Si-Dong,Chen, Yin,Huang, Mao Fang. 2007

[18]Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Yu, Heping,Zeng, Zongqiang,Lu, Guang,Wang, Qifang.

[19]Effects of coagulation processes on properties of epoxidized natural rubber. Zeng Zong-Qiang,Yu He-Ping,Wang Qi-Fang,Guang, Lu.

[20]Thermooxidative degradation of natural rubber/clay composite. Chen, M,Ao, NJ,Liao, YY,Chen, Y,Zhou, HL.

作者其他论文 更多>>