文献类型: 外文期刊
作者: Guo, Peiliang 1 ; Diao, Zhihua 1 ; Zhao, Chunjiang 2 ; Li, Jiangbo 3 ; Zhang, Ruirui 3 ; Yang, Ranbing 4 ; Ma, Shushuai 1 ; He, Zhendong 1 ; Zhao, Suna 1 ; Zhang, Baohua 5 ;
作者机构: 1.Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450002, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Res Ctr Intelligent Equipment, Beijing, Peoples R China
4.Hainan Univ, Coll Mech & Elect Engn, Haikou, Peoples R China
5.Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing, Peoples R China
关键词: agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
期刊名称:JOURNAL OF FIELD ROBOTICS ( 影响因子:8.3; 五年影响因子:7.5 )
ISSN: 1556-4959
年卷期: 2024 年
页码:
收录情况: SCI
摘要: The continuous and close combination of artificial intelligence technology and agriculture promotes the rapid development of smart agriculture, among which the agricultural robot navigation line recognition algorithm based on deep learning has achieved great success in detection accuracy and detection speed. However, there are still many problems, such as the large size of the algorithm is difficult to deploy in hardware equipment, and the accuracy and speed of crop row detection in real farmland environment are low. To solve the above problems, this paper proposed a navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet. First, the Convolution (Conv) module and C2f module of YOLOv8s network are replaced with Depthwise Convolution (DWConv) module and PP-LCNet module respectively to reduce the parameters (Params) and giga floating-point operations per second of the network, so as to achieve the purpose of network lightweight. Second, to reduce the precision loss caused by network lightweight, the spatial pyramid pooling fast module in the backbone network is changed to atrous spatial pyramid pooling faster module to improve the accuracy of network feature extraction. Meanwhile, normalization-based attention module is introduced into the network to improve the network's attention to corn plants. Then the corn plant was located by using the midpoint of the corn plant detection box. Finally, the least square method is used to extract the corn crop row line, and the middle line of the corn crop row line is the navigation line of the corn spraying robot. From the experimental results, it can be seen that the navigation line extraction algorithm proposed in this paper ensures both the real-time and accuracy of the navigation line extraction of the corn spraying robot, which contributes to the development of the visual navigation technology of agricultural robots.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy
作者:Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Li, Jiangbo;Wang, Qingyan;Shi, Ruiyao;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:tomato; soluble solids content; online detection; full transmission; quantitative analysis model
-
Toward a remote sensing method based on commercial LiDAR sensors for the measurement of spray drift and potential drift reduction
作者:Li, Longlong;Zhang, Ruirui;Chen, Liping;Ding, Chenchen;Tang, Qing;Liu, Boqin;Li, Longlong;Zhang, Ruirui;Chen, Liping;Ding, Chenchen;Tang, Qing;Liu, Boqin;Hewitt, Andrew J.;He, Xiongkui
关键词:LiDAR; Point clouds; Spray drift; Drift reduction percentage; Nozzles; Sprayers
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM