您好,欢迎访问福建省农业科学院 机构知识库!

An automatic identification system for citrus greening disease (Huanglongbing) using a YOLO convolutional neural network

文献类型: 外文期刊

作者: Qiu, Rong-Zhou 1 ; Chen, Shao-Ping 1 ; Chi, Mei-Xiang 1 ; Wang, Rong-Bo 1 ; Huang, Ting 1 ; Fan, Guo-Cheng 1 ; Zhao, Jian 1 ; Weng, Qi-Yong 1 ;

作者机构: 1.Fujian Acad Agr Sci, Inst Plant Protect, Fujian Key Lab Monitoring & Integrated Management, Fuzhou, Peoples R China

关键词: citrus greening; Huanglongbing; automated identification; deep learning; convolutional neural networks

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )

ISSN: 1664-462X

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Huanglongbing (HLB), or citrus greening disease, has complex and variable symptoms, making its diagnosis almost entirely reliant on subjective experience, which results in a low diagnosis efficiency. To overcome this problem, we constructed and validated a deep learning (DL)-based method for detecting citrus HLB using YOLOv5l from digital images. Three models (Yolov5l-HLB1, Yolov5l-HLB2, and Yolov5l-HLB3) were developed using images of healthy and symptomatic citrus leaves acquired under a range of imaging conditions. The micro F1-scores of the Yolov5l-HLB2 model (85.19%) recognising five HLB symptoms (blotchy mottling, "red-nose" fruits, zinc-deficiency, vein yellowing, and uniform yellowing) in the images were higher than those of the other two models. The generalisation performance of Yolov5l-HLB2 was tested using test set images acquired under two photographic conditions (conditions B and C) that were different from that of the model training set condition (condition A). The results suggested that this model performed well at recognising the five HLB symptom images acquired under both conditions B and C, and yielded a micro F1-score of 84.64% and 85.84%, respectively. In addition, the detection performance of the Yolov5l-HLB2 model was better for experienced users than for inexperienced users. The PCR-positive rate of Candidatus Liberibacter asiaticus (CLas) detection (the causative pathogen for HLB) in the samples with five HLB symptoms as classified using the Yolov5l-HLB2 model was also compared with manual classification by experts. This indicated that the model can be employed as a preliminary screening tool before the collection of field samples for subsequent PCR testing. We also developed the 'HLBdetector' app using the Yolov5l-HLB2 model, which allows farmers to complete HLB detection in seconds with only a mobile phone terminal and without expert guidance. Overall, we successfully constructed a reliable automatic HLB identification model and developed the user-friendly 'HLBdetector' app, facilitating the prevention and timely control of HLB transmission in citrus orchards.

  • 相关文献
作者其他论文 更多>>