您好,欢迎访问北京市农林科学院 机构知识库!

Cropland-to-Miscanthus conversion alters soil bacterial and archaeal communities influencing N-cycle in Northern China

文献类型: 外文期刊

作者: Zhao, Chunqiao 1 ; Li, Xiaona 1 ; Yue, Yuesen 1 ; Hou, Xincun 1 ; Guo, Qiang 1 ; Song, Jinku 2 ; Li, Cui 1 ; Zhang, Weiwe 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res & Dev Ctr Grass & Environm, 9 Shuguanghuayuan Middle Rd, Beijing 100097, Peoples R China

2.Huailai Bur Agr & Rural Affairs, Zhangjiakou City, Hebei, Peoples R China

关键词: 16S rRNA sequencing; cropland; functional genes; Miscanthus; N cycling; soil microbiome

期刊名称:GLOBAL CHANGE BIOLOGY BIOENERGY ( 影响因子:4.745; 五年影响因子:5.672 )

ISSN: 1757-1693

年卷期: 2021 年 13 卷 9 期

页码:

收录情况: SCI

摘要: Miscanthus spp. are increasingly cultivated in cropland worldwide due to their bioenergy potential and multiple ecological services. Effects of long-term cropland-to-Miscanthus conversion without N fertilizer on soil microbiome and N cycling largely remain unknown. We aimed to explore the effects of Miscanthus conversion on soil microbiome and N cycling over a 15-year period. We analyzed diversity, composition, and abundance of bacterial and archaeal communities using 16S rRNA amplicon sequencing, and abundances of N-cycling-related genes using quantitative polymerase chain reaction of 0-10 cm soils collected from bare land, cropland, 10-year Miscanthus x giganteus, and 15-year Miscanthus sacchriflorus land in Beijing. Conversion decreased soil sand and micro-aggregate proportion, nitrate N (NiN), available phosphorus levels, conductivity, temperature, and pH, while increasing proportion of soil clay and macro-aggregate (MAA), soil organic C (SOC), available N (AN), exchangeable Mg2+ (EMg2+), and available potassium (AK) contents as well as microbial C/N. Consequently, diversity, composition, and abundance of soil bacterial community exhibited larger changes than those values of archaeal community after conversion. Soil AP, EMg2+, AK, and SOC were key factors in shifting microbiome from the cropland to Miscanthus pattern. Moreover, abundances of bacterial and archaeal communities and the N fixer gene nifH increased, whereas that of the bacterial ammonia monooxygenase gene decreased. The copies of other N-cycling-related genes in the two Miscanthus lands seemed similar to those values of cropland. The nifH copies negatively correlated with soil NiN and positively correlated with AN, EMg2+, ECa2+, SOC, AK, and MAA. We conclude that changes in soil microbiome pattern induced by the variation of soil properties enhance microbial N fixation potential, maintaining stable N levels and robust N cycling with lower N leakage risk after conversion. These results should inspire farmers and governments to large-scale use Miscanthus on marginal cropland in Northern China.

  • 相关文献
作者其他论文 更多>>