Promotive effect of mechanochemically crushed straw on rice growth by improving soil properties and modulating bacterial communities
文献类型: 外文期刊
作者: Lv, Luqiong 1 ; Younan, Ouyang 2 ; Ijaz, Munazza 1 ; Guo, Junning 1 ; Ahmed, Temoor 1 ; Wang, Daoze 3 ; Wang, Yanli 4 ; Li, Bin 1 ;
作者机构: 1.Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol & Breeding, Minist Agr,Key Lab Mol Biol Crop Pathogens & Insec, Hangzhou 310058, Peoples R China
2.China Natl Rice Res Inst, Hangzhou, Peoples R China
3.Hangzhou Rural Revitalizat Serv Ctr, Hangzhou, Peoples R China
4.Zhejiang Acad Agr Sci, Inst Plant Protect & Microbiol, State Key Lab Qual & Safety Agro Prod, Hangzhou 310021, Peoples R China
5.Xianghu Lab, Hangzhou, Peoples R China
关键词: Crushed straw; Soil properties; Rice; Soil microbiome; Growth promotion
期刊名称:PLANT GROWTH REGULATION ( 影响因子:4.2; 五年影响因子:4.0 )
ISSN: 0167-6903
年卷期: 2024 年 103 卷 2 期
页码:
收录情况: SCI
摘要: The traditional approaches for utilizing straw as a growth support for plants in their initial growth phases may not be optimal owing to its protracted decomposition rate. We aim to address this problem by improving the degradation rate of straw through mechanochemical crushing, which can significantly expedite the process. Moreover, there remains a lack of clarity regarding the mechanisms responsible for the positive impact of mechanochemically crushed straw on rice growth. To gain a better understanding of the differences between using whole straw and mechanically crushed straw, this study investigates how mechanical crushing affects the structure of straw. Additionally, this study has examined the effects of incorporating mechanochemically crushed straw into paddy soil on bacterial communities, soil properties, and the growth of rice plants. In this investigation, whole straw was employed and two distinct methodologies for straw crushing were implemented, involving one instance of straw subjected to a 10 min crushing duration and another subjected to a 20 min crushing duration (SC20), while a control group was maintained devoid of any treatment. Our results demonstrated that the SC20 treatment significantly improved plant height (25.1%) and fresh (74.6%) and dry weight (76.3%) and increased soil nutrients, such as soil organic carbon (31.6%), total nitrogen (20.0%), available potassium (53.5%), available phosphorus (50.8%), microbial biomass carbon (48.4%) and microbial biomass nitrogen (52.2%), but significantly decreased soil pH (from 7.22 to 7.07) compared to the control group. The relative distribution of several specific bacteria, including WCHBI-32, Anaeromyxobacter and Anaerolinea, was significantly increased in both treatments, but the structure of the soil bacterial community was modulated by mechanochemically crushed straw, which were found to enhance carbon-related functional groups, but simultaneously reduce nitrogen-related functional groups in the soil. Overall, these findings suggest that incorporating crushed straw in paddy soil can alter soil properties, influence the microbial community and promote the growth of rice crop.
- 相关文献
作者其他论文 更多>>
-
Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.)
作者:Hafeez, Rahila;Guo, Junning;Ahmed, Temoor;Jiang, Hubiao;Ibrahim, Ezzeldin;An, Qianli;Li, Bin;Ahmed, Temoor;Ahmed, Temoor;Raza, Mubashar;Shahid, Muhammad;Wang, Yanli;Wang, Jiaoyu;Yan, Chengqi;White, Jason C.
关键词:Chitosan; Nanoparticles; Sustainable agriculture; Microbiome; Rice blast; Magnaporthe oryzae
-
Metagenomic and biochemical analyses reveal the potential of silicon to alleviate arsenic toxicity in rice (Oryza sativa L.)
作者:Ahmed, Temoor;Guo, Junning;Lv, Luqiong;Li, Bin;Ahmed, Temoor;Qi, Xingjiang;Ahmed, Temoor;Noman, Muhammad;Manzoor, Natasha
关键词:Arsenic; Antioxidants; Microbiome; Rice; Silicon
-
Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of Tetrastigma hemsleyanum Diels & Gilg in reclaimed land
作者:Li, Xuqing;Ren, Xiaoxu;Ruan, Songlin;Yan, Jianli;Su, Yao;Zhou, Xiang;Wang, Yu;Li, Bin;Guo, Kai
关键词:Tetrastigma hemsleyanum; Diels & Gilg (TDG); winter cold stress; reclaimed land; 16S rRNA; soil bacterial communities; soil metabolites; soil properties
-
Ancient bayberry increased stress resistance by enriching tissue-specific microbiome and metabolites
作者:Li, Gang;Ren, Haiying;Qi, Xingjiang;Han, Hao;Ding, Xiangyang;Sun, Li;Wang, Zhenshuo;Wang, Qi;Hafeez, Rahila;Li, Bin
关键词:
-
Quantum dots: next shift to combat plant diseases
作者:Ahmed, Temoor;Li, Bin;Ahmed, Temoor;Ahmed, Temoor;Noman, Muhammad;White, Jason C.;Ma, Chuanxin;Wang, Qi
关键词:
-
Antifungal profile and mechanism of bioinspired nanoscale magnesium against the agriculturally important pathogen Fusarium oxysporum f. sp. niveum
作者:Noman, Muhammad;Islam, Mohammad Shafiqul;Wang, Jing;Cai, Yingying;Hao, Zhongna;Zhang, Zhen;Wang, Yanli;Wang, Jiaoyu;Ahmed, Temoor;Islam, Mohammad Shafiqul;Li, Bin;Ahmed, Temoor;Ahmed, Temoor;Ahmad, Mudassar;Ali, Hayssam M.
关键词:
-
Utilizing zinc oxide nanoparticles as an environmentally safe biosystem to mitigate mycotoxicity and suppress Fusarium graminearium colonization in wheat
作者:Ibrahim, Ezzeldin;Hafeez, Rahila;Ogunyemi, Solabomi Olaitan;Abdallah, Yasmine;Li, Bin;Ibrahim, Ezzeldin;Xu, Lihui;Nasser, Raghda;Nasser, Raghda;Adel, Al-Shimaa Mohammed;Zhang, Zhen;Shou, Linfei;Wang, Daoze
关键词:ZnONPs; Antifungal mechanisms; DON reduction; Fusarium graminearum colonization; Plant protection