您好,欢迎访问浙江省农业科学院 机构知识库!

Synergistic anti-inflammatory effects of graphene oxide quantum dots and trans-10-hydroxy-2-decenoic acid on LPS-stimulated RAW 264.7 macrophage cells

文献类型: 外文期刊

作者: Huang, Minjie 1 ; Xiao, Minhui 1 ; Dong, Jie 1 ; Huang, Yee 1 ; Sun, Haiyan 2 ; Wang, Deqian 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Anim Husb & Vet Sci, 145 Shiqiao Rd, Hangzhou 310021, Peoples R China

2.Hangzhou Gaoxi Technol Co Ltd, 6 Naxian St, Hangzhou 310013, Zhejiang, Peoples R China

关键词: Graphene oxide quantum dots; Nanomaterials; 10-HDA; Anti-inflammation; Metabolomics

期刊名称:BIOMATERIALS ADVANCES

ISSN:

年卷期: 2022 年 136 卷

页码:

收录情况: SCI

摘要: Graphene oxide quantum dots (GOQDs) have attracted substantial attention in numerous fields due to their unique physicochemical properties. However, their nanotoxicity and potential for use in biomedicine still require further study. In this work, the effects of GOQD and trans- 10-hydroxy-2-decenoic acid (10-HDA) cotreatment on the immune function of macrophages (RAW264.7 cells) were investigated. In particular, LC/MS-based metabolomics was performed to evaluate the effects of GOQDs on the metabolism of LPS-stimulated macrophages. Herein, we fabricated GOQDs with good dispersibility and a uniform size distribution of approximately 7 nm using a polyimide-pyrolyzed carbon film as the working electrode, a high-voltage graphite electrode as the cathode, and H2O2 as the oxidant. The GOQDs entered the macrophages and emitted green fluorescence under UV irradiation. Cotreatment with GOQDs and 10-HDA induced RAW 264.7 cell proliferation. GOQDs promoted the anti-inflammatory effect of 10-HDA on LPS-stimulated RAW264.7 cells and attenuated the secretion of TNF??, IL-6, and IL-18. The metabolites in RAW264.7 cells treated with GOQDs were significantly different from those in RAW264.7 cells treated with LPS. The enrichment analysis showed that treatment with GOQDs interfered with amino acid metabolism, and lipid metabolism. Our results demonstrate the role of GOQDs in macrophages and provide a basis for their further application in biomedical fields.

  • 相关文献
作者其他论文 更多>>