您好,欢迎访问浙江省农业科学院 机构知识库!

Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice

文献类型: 外文期刊

作者: Sun, Jia 1 ; Liang, Weifang 2 ; Ye, Shenghai 4 ; Chen, Xinyu 2 ; Zhou, Yuhang 2 ; Lu, Jianfei 7 ; Shen, Ying 7 ; Wang, Xuming 2 ; Zhou, Jie 2 ; Yu, Chulang 8 ; Yan, Chengqi 9 ; Zheng, Bingsong 6 ; Chen, Jianping 2 ; Yang, Yong 2 ;

作者机构: 1.Fujian A&F Univ, Coll Life Sci, Fuzhou, Peoples R China

2.Zhejiang Acad Agr Sci, Inst Virol & Biotechnol,Zhejiang Prov Key Lab Biot, State Key Lab Managing Biot & Chem Threats Qual &, Key Lab Biotechnol Plant Protect,Minist Agr & Rura, Hangzhou, Peoples R China

3.Yunnan Agr Univ, Coll Plant Protect, Kunming, Peoples R China

4.Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou, Peoples R China

5.Shenyang Agr Univ, Coll Plant Protect, Shenyang, Peoples R China

6.Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou, Peoples R China

7.Zhejiang Plant Protect Quarantine & Pesticide Mana, Hangzhou, Peoples R China

8.Ningbo Univ, Inst Plant Virol,Zhejiang Prov Key Lab Biotechnol, State Key Lab Managing Biot & Chem Threats Qual &, Key Lab Biotechnol Plant Protect,Minist Agr & Rura, Ningbo, Peoples R China

9.Ningbo Acad Agr Sci, Inst Biotechnol, Ningbo, Peoples R China

关键词: whole-transcriptome; autophagy; ROS; cell death; early senescence

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )

ISSN: 1664-462X

年卷期: 2022 年 13 卷

页码:

收录情况: SCI

摘要: Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.

  • 相关文献
作者其他论文 更多>>