您好,欢迎访问中国热带农业科学院 机构知识库!

Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis

文献类型: 外文期刊

作者: Xu, Yufen 1 ; Liu, Yanju 1 ; Yu, Zhaoyan 1 ; Jia, Xiaocheng 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Coconut Res Inst, Hainan Key Lab Trop Oil Crops Biol, Wenchang 571339, Peoples R China

关键词: Camellia 'Xiari Qixin'; Theaceae; chloroplast genome; phylogeny

期刊名称:GENES ( 影响因子:3.5; 五年影响因子:3.9 )

ISSN:

年卷期: 2023 年 14 卷 2 期

页码:

收录情况: SCI

摘要: The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.

  • 相关文献
作者其他论文 更多>>