Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava
文献类型: 外文期刊
作者: Zhang, Lin 1 ; Zhang, Jiachao 1 ; Wei, Yunxie 1 ; Hu, Wei 2 ; Liu, Guoyin 1 ; Zeng, Hongqiu 1 ; Shi, Haitao 1 ;
作者机构: 1.Hainan Univ, Hainan Key Lab Sustainable Utilizat Trop Bioresou, Coll Food Sci & Technol, Coll Trop Crops,Coll Life & Pharmaceut Sci, Haikou, Hainan, Peoples R China
2.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Key Lab Biol & Genet Resources Trop Crops, Haikou, Hainan, Peoples R China
关键词: cassava; microbiome; metagenome; disease resistance; Lactococcus sp; nisin
期刊名称:PLANT BIOTECHNOLOGY JOURNAL ( 影响因子:9.803; 五年影响因子:9.555 )
ISSN: 1467-7644
年卷期: 2021 年 19 卷 4 期
页码:
收录情况: SCI
摘要: Cassava is one of the most important staple food crops in tropical regions. To date, an understanding of the relationship between microbial communities and disease resistance in cassava has remained elusive. In order to explore the relationship among microbiome and phenotypes for further targeted design of microbial community, 16S rRNA and ITS of microbiome of ten cassava varieties were analysed, and a distinctive microbial community in the rhizosphere showed significant interdependence with disease resistance. Shotgun metagenome sequencing was performed to elucidate the structure of microbiomes of cassava rhizosphere. Comprehensive microbiome studies were performed to assess the correlation between the rhizosphere microbiome and disease resistance. Subsequently, the metagenome of rhizosphere microbiome was annotated to obtain taxonomic information at species level and identify metabolic pathways that were significantly associated with cassava disease resistance. Notably, cassava disease resistance was significantly associated with Lactococcus sp., which specifically produces nisin. To definitively explain the role of nisin and underlying mechanism, analysis of nisin biosynthesis-associated genes together with in vitro and in vivo experiments highlighted the effect of nisin on inhibiting the growth of Xanthomonas axonopodis pv. manihotis (Xam) and activating immune response in cassava. The new insights between cassava rhizosphere microbiome especially Lactococcus sp. and disease resistance provide valuable information into further control of cassava disease.
- 相关文献
作者其他论文 更多>>
-
Two unprecedented neuroprotective 2-(2-phenylethyl)chromone derivatives from cultivated "Qi-Nan" agarwood of Aquilaria sinensis
作者:Zhang, Lin;Yang, Li;Li, Wei;Chen, Hui-Qin;Yuan, Jing-Zhe;Cai, Cai-Hong;Mei, Wen-Li;Dai, Hao-Fu;Zhang, Lin;Li, Zhen-Yu
关键词:Cultivated "Qi-Nan" agarwood; Aquilaria sinensis; 2-(2-phenylethyl)chromone; Neuroprotective activity
-
The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis
作者:Yan, Yan;Li, Meiying;Ding, Zehong;Yang, Jinghao;Xie, Zhengnan;Ye, Xiaoxue;Tie, Weiwei;Tao, Xiangru;Chen, Ganlu;Hu, Wei;Yan, Yan;Li, Meiying;Ding, Zehong;Yang, Jinghao;Xie, Zhengnan;Ye, Xiaoxue;Tie, Weiwei;Hu, Wei;Yan, Yan;Li, Meiying;Ding, Zehong;Ye, Xiaoxue;Tie, Weiwei;Huo, Kaisen;Ma, Jianxiang;Hu, Wei;Ye, Jianqiu;Hu, Wei
关键词:Cassava; Postharvest physiological deterioration; Lysine acetylation; Ethephon; Reactive oxygen species scavenging system
-
Acetic acid delays fresh-cut cassava browning through fine-tunning redox homeostasis
作者:Liu, Guoyin;Zhang, Xueyi;Wei, Yunxie;Zhao, Huiping;Shi, Haitao;Wei, Yunxie;Zhao, Huiping;Shi, Haitao;Wei, Junya
关键词:Fresh -cut cassava; Browning; Enzyme; Acetic acid
-
MePP2C24, a cassava (Manihot esculenta) gene encoding protein phosphatase 2C, negatively regulates drought stress and abscisic acid responses in transgenic Arabidopsis thaliana
作者:Zeng, Jian;Zhou, Jiewei;Chen, Yingtong;Li, Lizhen;Lin, Man;Wang, Shuting;Liu, Siwen;Liu, Yujia;Yan, Yan;Tie, Weiwei;Yang, Jinghao;Zeng, Liwang;Hu, Wei;Wu, Chunlai;Hu, Wei;Liu, Siwen;Yan, Fei
关键词:Cassava; Abscisic acid; Abiotic stress; Drought; PP2C
-
Elucidating the molecular mechanisms in phytohormones-induced alleviation of postharvest physiological deterioration in cassava tuberous roots
作者:Ye, Xiaoxue;Xie, Zhengnan;Ding, Zehong;Tie, Weiwei;Yan, Yan;Huo, Kaisen;Ma, Jianxing;Li, Chaochao;Hu, Wei;Ye, Xiaoxue;Xie, Zhengnan;Ding, Zehong;Tie, Weiwei;Yan, Yan;Huo, Kaisen;Ma, Jianxing;Li, Chaochao;Hu, Wei;Ye, Xiaoxue;Xie, Zhengnan;Ding, Zehong;Tie, Weiwei;Yan, Yan;Huo, Kaisen;Ma, Jianxing;Li, Chaochao;Hu, Wei;Zeng, Liwang;Chen, Yinhua;Yan, Fei;Yan, Fei;Ye, Jianqiu
关键词:Cassava; Postharvest physiological deterioration; Glutathione S-Transferases; Transcriptional regulation
-
MiMYB10 transcription factor regulates biosynthesis and accumulation of carotenoid involved genes in mango fruit
作者:Dang, Zhiguo;Zhu, Min;Chen, Huarui;Gao, Aiping;Ma, Weihong;Chen, Yeyuan;Dang, Zhiguo;Zhang, He;Zhu, Min;Chen, Yeyuan;Zhang, Ye;Wei, Yunxie
关键词:Mango; MYB10; Transcriptional regulation; Phytoene desaturase gene; Carotenoid; Peel color
-
Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root
作者:Ding, Zehong;Fu, Lili;Yan, Yan;Li, Meiying;Tie, Weiwei;Ye, Xiaoxue;Yang, Jinghao;Xie, Zhengnan;Wang, Yu;Guo, Jianchun;Zhang, Jiaming;Peng, Ming;Hu, Wei;Wang, Bin;Ye, Jianqiu;Ou, Wenjun;Chen, Songbi;Xiao, Xinhui;Wan, Zhongqing;An, Feifei;Li, Kaimian;Yan, Yan;Li, Meiying;Tie, Weiwei;Ye, Xiaoxue;Yang, Jinghao;Xie, Zhengnan;Wang, Yu;Guo, Jianchun;Zhang, Jiaming;Peng, Ming;Zeng, Liwang;Tie, Weiwei;Ye, Xiaoxue;Wang, Yu;Peng, Ming;Luo, Jie;Zeng, Liwang;Dong, Xuekui;Luo, Jie
关键词:Cassava; Metabolic profiling; Genome-wide association study; Natural variation; Nutrient quality; Domestication



