A vegetable disease recognition model for complex background based on region proposal and progressive learning
文献类型: 外文期刊
作者: Zhou, Ji 1 ; Li, Jiuxi 5 ; Wang, Chunshan 1 ; Wu, Huarui 2 ; Zhao, Chunjiang 1 ; Wang, Qian 1 ;
作者机构: 1.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding 071001, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Hebei Key Lab Agr Big Data, Baoding 071001, Peoples R China
5.Hebei Agr Univ, Sch Mech & Elect Engn, Baoding 071001, Peoples R China
关键词: Vegetable disease; Complex background; Region proposal; Progressive learning; Attention mechanism
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:3.858; 五年影响因子:4.008 )
ISSN: 0168-1699
年卷期: 2021 年 184 卷
页码:
收录情况: SCI
摘要: The method of vegetable disease recognition based on deep learning has achieved relative success under limited conditions, but a recognition model targeting at simple backgrounds may be subjected to greatly-reduced accuracy in actual production environments. This is due to the fact that the disease images obtained from actual production environments are usually of complex backgrounds, which may contain elements similar to the disease features or symptoms. Such a phenomenon significantly increases the difficulty of disease recognition. In response to this problem, we proposed a vegetable disease recognition model for complex backgrounds based on region proposal and progressive learning (PRP-Net). This model can locate the regions of interest in the images of diseased leaves based on the region proposal network. The located regions will then be cropped and enlarged as the input to proceed with progressive learning in a finer-scale network. The region proposal part of this model can guide the model to focus on the regions of interest in the disease images with complex backgrounds in a weakly supervised manner, so as to avoid the expensive costs to manually label the key regions of the image. The progressive learning network allows the model to learn global features and local delicate features in a progressive manner. In a self-collected image dataset containing 6 types of complex-background vegetable diseases, this model achieves an average recognition accuracy of 98.26%, which is 4.46 percentage points higher than that of the original region proposal network framework (RA-CNN). Meanwhile, it is also superior to any feature extraction network that is used alone. This study provides useful ideas and methodological concepts for recognizing vegetable diseases under complex backgrounds.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
A fuzzy decision-making algorithm-based header height measurement system for combine harvester
作者:Wang, Qian;Zhu, Qing-zhen;Wang, Qian;Zhao, Jun-jie;Meng, Zhi-jun;Qin, Wu-chang;Wang, Feng;Zhao, Chun-jiang;Yin, Yan-xin;Wang, Qian;Zhao, Jun-jie;Meng, Zhi-jun;Qin, Wu-chang;Wang, Feng;Zhao, Chun-jiang;Wen, Chang-kai;Yin, Yan-xin;Wen, Chang-kai;Zhao, Jun-jie
关键词:Combine harvester; Header height; Header height online measurement system; Kalman filter; Fuzzy decision-making
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



