Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants
文献类型: 外文期刊
作者: Chen, Xuan 1 ; Jiang, Wei 1 ; Tong, Tao 1 ; Chen, Guang 2 ; Zeng, Fanrong 1 ; Jang, Sunghoon 3 ; Gao, Wei 4 ; Li, Zhen 5 ; M 1 ;
作者机构: 1.Yangtze Univ, Coll Agr, Collaborat Innovat Ctr Grain Ind, Jingzhou, Peoples R China
2.Zhejiang Acad Agr Sci, Lab Cent, Hangzhou, Peoples R China
3.Pohang Univ Sci & Technol, Dept Life Sci, Pohang, South Korea
4.Henan Univ, State Key Lab Crop Stress Adaptat & Improvement, Kaifeng, Peoples R China
5.Jinhua Polytech, Sch Agr, Jinhua, Zhejiang, Peoples R China
6.Western Sydney Univ, Sch Sci, Penrith, NSW, Australia
7.Western Sydney Univ, Hawkesbury Inst Environm, Penrith, NSW, Australia
关键词: jasmonic acid; plant evolution; comparative genomics; cadmium; arsenic; detoxification
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.402; 五年影响因子:5.207 )
ISSN: 1664-462X
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: An increase in environmental pollution resulting from toxic heavy metals and metalloids [e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans and animals. Mitigation strategies need to be developed to reduce the accumulation of the toxic elements in plant-derived foods. Natural and genetically-engineered plants with hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for phytoremediation. However, the molecular mechanisms of detoxification and accumulation in plants have only been demonstrated in very few plant species such as Arabidopsis and rice. Here, we review the physiological and molecular aspects of jasmonic acid and the jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates have been identified in, limiting the accumulation and enhancing the tolerance to the toxic elements, by coordinating the ion transport system, the activity of antioxidant enzymes, and the chelating capacity in plants. We also propose the potential involvement of Ca2+ signaling in the stress-induced production of jasmonates. Comparative transcriptomics analyses using the public datasets reveal the key gene families involved in the JA-responsive routes. Furthermore, we show that JAs may function as a fundamental phytohormone that protects plants from heavy metals and metalloids as demonstrated by the evolutionary conservation and diversity of these gene families in a large number of species of the major green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six representative green plant species, we propose that JA transporters in Subgroup 4 of ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance toward the selection and development of suitable plant and crop species that are tolerant to toxic heavy metals and metalloids.
- 相关文献
作者其他论文 更多>>
-
Insight into the enhancement and mechanism of saltiness perception by salty peptides from bovine bone
作者:Wang, Haiyan;Lu, Wenjing;Chen, Di;Chen, Xuan;Zhang, Cen;Xiao, Chaogeng;Wang, Haiyan;Xiao, Chaogeng;Dang, Yali;Chen, Xuan;Gou, Zhongjun;Wang, Yongjun
关键词:Salty peptides; TMC4; Sodium reduction; Stevens' law; Molecular dynamics simulation
-
Bacillus amyloliquefaciens strain Q1 inoculation enhances salt tolerance of barley seedlings by maintaining the photosynthetic capacity and intracellular Na+/K+ homeostasis
作者:Liu, Hongjiang;Amoanimaa-Dede, Hanna;Zhang, Yanli;Wu, Xiaojian;Deng, Fenglin;Qin, Yuan;Zeng, Fanrong;Qiu, Haiping;Wang, Yanli;Ouyang, Younan
关键词:
Bacillus amyloliquefaciens ; Soil salinization; Photosynthetic attributes; Ion homeostasis; Antioxidant capacity;Hordeum vulgare L. -
The differential partition of copper in cell wall and symplastic space contributes to the natural variation of copper toxicity tolerance in rice
作者:Zhang, Jin;Qin, Yuan;Chen, Xuan;Xiao, Nayun;Jiang, Wei;Tang, Haiyang;Zhou, Hui;Qiu, Xianjin;Zeng, Fanrong;Deng, Fenglin;Xu, Jianlong;Chen, Zhong-Hua;Chen, Zhong-Hua;Chen, Guang;Deng, Fenglin
关键词:Copper; Rice (Oryza Sativa); Root elongation; Cell wall; Transporter
-
Conservation and divergence of OsGSTU9 and OsGSTU19 in cadmium detoxification and accumulation in rice
作者:Chen, Xuan;Jiang, Wei;Chang, Di;Zheng, Qingfeng;Zhu, Chunmeng;Hao, Li;Zeng, Fanrong;Qin, Yuan;Deng, Fenglin;Jiang, Wei;Chen, Zhong-Hua;Chen, Guang;Deng, Fenglin
关键词:Glutathione S-transferase; ROS homeostasis; Gene family evolution; Cadmium stress; Cell wall fixation
-
Plant growth-promoting rhizobacteria improve drought tolerance of crops: a review
作者:Liu, Kewei;Deng, Fenglin;Zeng, Fanrong;Qin, Yuan;Chen, Zhong-Hua;Chen, Guang
关键词:Rhizosphere microorganisms; Drought stress; Crop-microbe interaction; Sustainable food production
-
Structural and Functional Diversity of Glutamate Receptors-Like Channels in Plants
作者:Riaz, Bisma;Zhang, Yanli;Riaz, Adeel;Qin, Yuan;Deng, Fenglin;Zeng, Fanrong;Riaz, Bisma;Zhang, Yanli;Riaz, Adeel;Qin, Yuan;Deng, Fenglin;Zeng, Fanrong;Jiang, Wei;Sadia, Hafiza;Chen, Guang;Chen, Zhong-Hua
关键词:calcium; electrical signaling; GLR channel; molecular evolution; vascular system
-
Phylogenomic and super-pangenome analyses unveil the genetic landscape of tomato evolution and domestication
作者:Yu, Jingyin;Chen, Qionglin;Yuan, Lu;Feng, Shouli;Huang, Miaomiao;Zheng, Peng;Tao, Xiaoyuan;Xu, Shengchun;Chen, Guang;Xu, Shengchun;Edwards, David;Edwards, David;Chen, Zhong-Hua
关键词:gene-based super-pangenome; genetic diversity; agronomic traits; presence/absence variation (PAV); crop improvement; sustainable production



