您好,欢迎访问福建省农业科学院 机构知识库!

pH-Controlled Release of Antigens Using Mesoporous Silica Nanoparticles Delivery System for Developing a Fish Oral Vaccine

文献类型: 外文期刊

作者: Zhang, Weibin 1 ; Zhu, Chunhua 2 ; Xiao, Fangnan 1 ; Liu, Xiaodong 2 ; Xie, Anhua 2 ; Chen, Fangman 3 ; Dong, Panpan 1 ;

作者机构: 1.Fujian Normal Univ, Coll Life Sci, Prov Univ Key Lab Cellular Stress Response & Meta, Fuzhou, Peoples R China

2.Fujian Acad Agr Sci, Inst Anim Husb & Vet Med, Inst Biotechnol, Fuzhou, Peoples R China

3.Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou, Peoples R China

关键词: vaccine; nanoparticle; oral delivery; large yellow croaker (Larimichthys crocea); immune response

期刊名称:FRONTIERS IN IMMUNOLOGY ( 影响因子:5.085; 五年影响因子:5.733 )

ISSN: 1664-3224

年卷期: 2021 年 12 卷

页码:

收录情况: SCI

摘要: The development of effective vaccines and delivery systems in aquaculture is a long-term challenge for controlling emerging and reemerging infections. Cost-efficient and advanced nanoparticle vaccines are of tremendous applicability in prevention of infectious diseases of fish. In this study, dihydrolipoamide dehydrogenase (DLDH) antigens of Vibrio alginolyticus were loaded into mesoporous silica nanoparticles (MSN) to compose the vaccine delivery system. Hydroxypropyl methylcellulose phthalate (HP55) was coated to provide protection of immunogen. The morphology, loading capacity, acid-base triggered release were characterized and the toxicity of nanoparticle vaccine was determined in vitro. Further, the vaccine immune effects were evaluated in large yellow croaker via oral administration. In vitro studies confirmed that the antigen could be stable in enzymes-rich artificial gastric fluid and released under artificial intestinal fluid environment. In vitro cytotoxicity assessment demonstrated the vaccines within 120 mu g/ml have good biocompatibility for large yellow croaker kidney cells. Our data confirmed that the nanoparticle vaccine in vivo could elicit innate and adaptive immune response, and provide good protection against Vibrio alginolyticus challenge. The MSN delivery system prepared may be a potential candidate carrier for fish vaccine via oral administration feeding. Further, we provide theoretical basis for developing convenient, high-performance, and cost-efficient vaccine against infectious diseases in aquaculture.

  • 相关文献
作者其他论文 更多>>