Composited FishNet: Fish Detection and Species Recognition From Low-Quality Underwater Videos
文献类型: 外文期刊
作者: Zhao, Zhenxi 1 ; Liu, Yang 1 ; Sun, Xudong 4 ; Liu, Jintao 5 ; Yang, Xinting 1 ; Zhou, Chao 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
4.East China Jiaotong Univ, Sch Mechatron Engn, Nanchang 330013, Jiangxi, Peoples R China
5.Univ Almeria, Sch Engn, Almeria 04120, Spain
关键词: Fish; Feature extraction; Object detection; Task analysis; Detectors; Data mining; Object recognition; Composite backbone network; composited FishNet; fish detection; feature fusion; underwater videos
期刊名称:IEEE TRANSACTIONS ON IMAGE PROCESSING ( 影响因子:9.34; 五年影响因子:9.369 )
ISSN: 1057-7149
年卷期: 2021 年 30 卷
页码:
收录情况: SCI
摘要: The automatic detection and identification of fish from underwater videos is of great significance for fishery resource assessment and ecological environment monitoring. However, due to the poor quality of underwater images and unconstrained fish movement, traditional hand-designed feature extraction methods or convolutional neural network (CNN)-based object detection algorithms cannot meet the detection requirements in real underwater scenes. Therefore, to realize fish recognition and localization in a complex underwater environment, this paper proposes a novel composite fish detection framework based on a composite backbone and an enhanced path aggregation network called Composited FishNet. By improving the residual network (ResNet), a new composite backbone network (CBresnet) is designed to learn the scene change information (source domain style), which is caused by the differences in the image brightness, fish orientation, seabed structure, aquatic plant movement, fish species shape and texture differences. Thus, the interference of underwater environmental information on the object characteristics is reduced, and the output of the main network to the object information is strengthened. In addition, to better integrate the high and low feature information output from CBresnet, the enhanced path aggregation network (EPANet) is also designed to solve the insufficient utilization of semantic information caused by linear upsampling. The experimental results show that the average precision (AP)(0.5:0.95), AP(50) and average recall (AR)(max=10) of the proposed Composited FishNet are 75.2%, 92.8% and 81.1%, respectively. The composite backbone network enhances the characteristic information output of the detected object and improves the utilization of characteristic information. This method can be used for fish detection and identification in complex underwater environments such as oceans and aquaculture.
- 相关文献
作者其他论文 更多>>
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
作者:Fu, Tingting;Feng, Dejun;Li, Shantan;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao
关键词:DF-DETR; Dead fish detection; Feature fusion; Recirculating aquaculture system
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring
作者:Chen, Xiao;Hu, Huan;Li, Tianjun;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Zhou, Zijie
关键词:Pest detection; YOLOv8; Fusion features; Small objects; Multiple scale detection
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Segmentation and Fractional Coverage Estimation of Soil, Illuminated Vegetation, and Shaded Vegetation in Corn Canopy Images Using CCSNet and UAV Remote Sensing
作者:Zhang, Shanxin;Yue, Jibo;Shu, Meiyan;Zhang, Shanxin;Wang, Xiaoyan;Feng, Haikuan;Feng, Haikuan;Liu, Yang
关键词:segmentation; digital camera; corn; deep learning
-
Estimation of potato above-ground biomass based on the VGC-AGB model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Bian, Mingbo;Liu, Yang;Chen, Riqiang;Ma, Yanpeng;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Yue, Jibo;Feng, Haikuan;Zhao, Chunjiang
关键词:Hyperspectral; Above-ground biomass; Potato; Deep learning; Leaf area index
-
Utilizing UAV-based hyperspectral remote sensing combined with various agronomic traits to monitor potato growth and estimate yield
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Fan, Jiejie;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Liu, Yang;Yue, Jibo;Yang, Fuqin
关键词:Crop growth monitoring; Potato yield; Crop traits; UAV; Hyperspectral



