您好,欢迎访问北京市农林科学院 机构知识库!

Functional characterization and mapping of two MADS box genes from peach (Prunus persica)

文献类型: 外文期刊

作者: Xu Yong 1 ; Zhang Lin 1 ; Ma RongCai 1 ;

作者机构: 1.Capital Normal Univ, Coll Life Sci, Beijing 100037, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Beijing Agro Biotechnol Res Ctr, Beijing 100097, Peoples R China

关键词: plant growth;floral organ development

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight into their function, the two genes were constitutively expressed in Arabidopsis thaliana and their effects on plant growth and floral organ development were studied in this work. The transgenic plants all displayed early flowering and conversion of inflorescence to floral meristem. However, the two genes had different effects on the floral organ structures in A. thaliana. The transgenic plants overexpressing PpMADS4 displayed homeotic conversion of floral organs, and particularly the perianth abscission was inhibited. The plants overexpressing PpMADS6 showed early flowering, produced higher number of carpels, petals, and stamens than nontransgenic plants, and pod shatter was prevented; significantly, the transgenic plants yielded more than one siliques from a single flower. A SSR molecular marker was developed for PpMADS4, and it was then assigned into the G5 linkage group of Prunus sp. Both PpMADS4 and PpMADS6 genes were located at the same region in the G5 linkage group. Our results showed the potential application of these two MADS box genes for crop and fruit tree improvement.

  • 相关文献

[1]Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality. Xiong, Jing,Wang, Jingguo,Chen, Qing,Xiong, Jing,Liu, Wei,Tian, Yongqiang. 2017

[2]Effect of nitrogen and sulfur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.). Liu, Songzhong,Feng, Gu,Chen, Qing,Liu, Songzhong,He, Hongju.

作者其他论文 更多>>