文献类型: 外文期刊
作者: Wang, Chao 1 ; Tang, Yujia 2 ;
作者机构: 1.BAAFS, Beijing Res & Dev Ctr Grasses & Environm, Shuguang Garden Middle Rd 9, CN-100097 Beijing, Peoples R China
2.Capital Normal Univ, Sch Life Sci, Beijing, Peoples R China
关键词: diversity; functional group; N deposition; phenology; reproductive duration
期刊名称:OIKOS ( 影响因子:3.903; 五年影响因子:4.34 )
ISSN: 0030-1299
年卷期: 2019 年 128 卷 9 期
页码:
收录情况: SCI
摘要: Phenology is one of the most sensitive processes of plant in response to global change. Anthropogenic activities have considerably increased nitrogen (N) deposition, which significant affects plant phenology. Although numerous individual studies have been conducted, it remains controversial how N addition affects phenological stages, and a comprehensive understanding of how plant phenology responds to external N inputs remains elusive. To reconcile the differences, we conducted a meta-analysis of 117 species to examine the responses of plant phenology to N addition in terrestrial ecosystems, and assessed variations in their responses in relation to ecosystem types, functional groups, and environmental conditions. Our results showed that plant phenology changed significantly after N addition, and phenology time delayed and phenology duration shortened significantly across all biomes except fruiting duration, but varied with biome types. The phenology change in cropland was more dramatical than in grassland after N addition, even in opposite directions. The response of phenological stages to N addition was consistent in two pollination types except the flowering time, the flowering time had no change in anemophilous but significantly delayed in entomophilous. In addition, the response of phenology to N addition was discrepancy among functional groups, the phenology time advanced and duration shortened in sedge, while phenology time delayed and duration shortened in other groups, and the phenology change in legume was larger than grass and forbs. We also found that environmental factors had little effects on the response of plant phenology to N addition, but significant correlation was found between the response ratios of different phenological stages. Our study suggested that phenology was sensitive to N deposition at many phenological stages, and changes in phenology may be smaller with community biodiversity increasing at ecosystem level.
- 相关文献
作者其他论文 更多>>
-
Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil
作者:Zhang, Chen;Shi, Dong;Wang, Chao;Hu, Yanxia;Li, Xiaona;Hou, Yanhui;Zheng, Ruilun;Zhang, Chen;Li, Huafen;Sun, Guoxin
关键词:Cadmium (Cd); Arsenic (As) speciation; Co-contamination; Magnesium-loaded biochar; Zero-valent iron (ZVI); Rice
-
Resource-enhancing global changes shift soil multifunctionality towards faster cycling in arid grasslands
作者:Song, Zhaobin;Zuo, Xiaoan;Wang, Shaokun;Li, Xiangyun;Hu, Ya;Qiao, Jingjuan;Song, Zhaobin;Zuo, Xiaoan;Wang, Shaokun;Li, Xiangyun;Hu, Ya;Qiao, Jingjuan;Song, Zhaobin;Li, Xiangyun;Qiao, Jingjuan;Wang, Chao;Fry, Ellen L.;Sardans, Jordi;Penuelas, Josep;Sardans, Jordi;Penuelas, Josep;Hautier, Yann;Zuo, Xiaoan
关键词:Soil function; Microbial diversity; Grassland; Plant diversity; Global change ecology; Nutrient cycling
-
Coordinated variation in elemental composition and morphology in leaves, but independence in roots across Chinese grasslands
作者:Wang, Chao;Geng, Yan;He, Jin-Sheng;Sardans, Jordi;Penuelas, Josep;Sardans, Jordi;Penuelas, Josep;He, Jin-Sheng
关键词:biogeochemical niche; continental scale; elemental composition; grassland; legacy effects; morphological trait; plant organ
-
Biogeochemical niches modulate shoot and root biomass in Potentillinae across Chinese grasslands
作者:Wang, Chao;Li, Xiaona;Hou, Yanhui;Suonan, Ji;Wang, Yonghui;Wang, Yonghui;Yu, Lingfei;Penuelas, Josep;Sardans, Jordi;Penuelas, Josep;Sardans, Jordi
关键词:above- and below-ground; continental scale; ecosystem functions; elemental concentrations; Elementome; grassland; Hypervolume
-
Faster growth rate induces higher ecosystem productivity in Inner Mongolian grasslands during 2000-2018 years
作者:Nie, Zexu;Zhang, Na;Nie, Zexu;Wang, Chao;Zhang, Na
关键词:Vegetation phenology; Environmental factor; Relative contribution; Drylands
-
Coordinated variations in leaf and root biogeochemical niches
作者:Wang, Chao;Yang, Zhihui;Hou, Yanhui;Li, Xiaona;Yang, Zhihui;Wang, Yonghui;Yang, Zhihui;Wang, Yonghui;He, Mingzhu;Hu, Yu-Kun;Lei, Yanbao;Ji, Suonan;Yu, Lingfei;Penuelas, Josep;Sardans, Jordi;Penuelas, Josep;Sardans, Jordi
关键词:biogeochemical niche; elemental composition; leaf; niche hypervolume; phylogeny; root
-
A UAV-based hybrid approach for improving aboveground dry biomass estimation of winter wheat
作者:Zhao, Yu;Wang, Chao;Feng, Meichen;Xiao, Lujie;Yang, Wude;Zhao, Yu;Feng, Haikuan;Han, Shaoyu;Li, Zhenhai;Yang, Guijun;Han, Shaoyu
关键词:Unmanned aerial vehicle; Aboveground dry biomass estimation; PROSAIL; Hybrid model; Growing degree day



