Estimating ground-level CO concentrations across China based on the national monitoring network and MOPITT: potentially overlooked CO hotspots in the Tibetan Plateau
文献类型: 外文期刊
作者: Liu, Dongren 1 ; Di, Baofeng 1 ; Luo, Yuzhou 3 ; Deng, Xunfei 4 ; Zhang, Hanyue 1 ; Yang, Fumo 1 ; Grieneisen, Michael 1 ;
作者机构: 1.Sichuan Univ, Dept Environm Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
2.Sichuan Univ, Inst Disaster Management & Reconstruct, Chengdu 610200, Sichuan, Peoples R China
3.Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
4.Zhejiang Acad Agr Sci, Inst Digital Agr, Hangzhou 310021, Zhejiang, Peoples R China
5.Natl Engn Res Ctr Flue Gas Desulfurizat, Chengdu 610065, Sichuan, Peoples R China
6.Sichuan Univ, Sino German Ctr Water & Hlth Res, Chengdu 610065, Sichuan, Peoples R China
7.Sichuan Univ, Med Big Data Ctr, Chengdu 610041, Sichuan, Peoples R China
期刊名称:ATMOSPHERIC CHEMISTRY AND PHYSICS ( 影响因子:6.133; 五年影响因子:6.546 )
ISSN: 1680-7316
年卷期: 2019 年 19 卷 19 期
页码:
收录情况: SCI
摘要: Given its relatively long lifetime in the troposphere, carbon monoxide (CO) is commonly employed as a tracer for characterizing airborne pollutant distributions. The present study aims to estimate the spatiotemporal distributions of ground-level CO concentrations across China during 2013-2016. We refined the random-forest-spatiotemporal kriging (RF-STK) model to simulate the daily CO concentrations on a 0.1 degrees grid based on the extensive CO monitoring data and the Measurements of Pollution in the Troposphere CO retrievals (MOPITT CO). The RF-STK model alleviated the negative effects of sampling bias and variance heterogeneity on the model training, with cross-validation R-2 of 0.51 and 0.71 for predicting the daily and multiyear average CO concentrations, respectively. The national population-weighted average CO concentrations were predicted to be 0.99 +/- 0.30 mg m(-3) (mu +/-sigma) and showed decreasing trends over all regions of China at a rate of -0.021 +/- 0.004 mg m(-3) yr(-1). The CO pollution was more severe in North China (1.19 +/- 0.30 mg m(-3)), and the predicted patterns were generally consistent with MOPITT CO. The hotspots in the central Tibetan Plateau where the CO concentrations were underestimated by MOPITT CO were apparent in the RF-STK predictions. This comprehensive dataset of ground-level CO concentrations is valuable for air quality management in China.
- 相关文献
作者其他论文 更多>>
-
Detection of the Optimal Temporal Windows for Mapping Paddy Rice Under a Double-Cropping System Using Sentinel-2 Imagery
作者:Sheng, Li;Ren, Zhouqiao;Zhou, Hongkui;Deng, Xunfei;Sheng, Li;Ren, Zhouqiao;Zhou, Hongkui;Deng, Xunfei;Lv, Yuefeng
关键词:paddy rice mapping; double-cropping system; Sentinel-2; temporal window analysis
-
Advancing Provincial Cropland Soil Mapping With Temporal Satellite Data Integration
作者:Wang, Xi;Zhou, Furong;Chen, Songchao;Shi, Zhou;Wang, Xi;Zhou, Furong;Chen, Songchao;Shi, Zhou;Chen, Songchao;Deng, Xunfei;Ren, Zhouqiao;Duan, Si-Bo;Wang, Mengru
关键词:digital soil mapping; management practices; satellite gap-filling; temporal information; time series satellite images
-
Spatiotemporal changes of soil organic carbon in intensive croplands over three decades: Emerging role of farmland utilization shifts
作者:Xiang, Mingtao;Chen, Xiaojia;Sheng, Meiling;Ren, Zhouqiao;Ma, Wanzhu;Deng, Xunfei;Chen, Songchao;Chen, Songchao;Wu, Chunyan;Sheng, Meiling;Ren, Zhouqiao;Ma, Wanzhu;Deng, Xunfei;Sheng, Meiling;Deng, Xunfei;Ming, Ming;Zhan, Yu
关键词:Farmland utilization shifts; Cropping pattern; Carbon accounting; Farmland partition
-
Ginkgo biloba Sex Identification Methods Using Hyperspectral Imaging and Machine Learning
作者:Chen, Mengyuan;Yang, Rui;Lu, Xiangyu;Liu, Fei;Lin, Chenfeng;Zhao, Yunpeng;Sun, Yongqi;Lou, Weidong;Deng, Xunfei
关键词:Ginkgo biloba; sex identification; leaf morphology; hyperspectral imaging; machine learning
-
Using process-oriented model output to enhance machine learning-based soil organic carbon prediction in space and time
作者:Zhang, Lei;Yang, Lin;Zhang, Lei;Heuvelink, Gerard B. M.;Mulder, Vera L.;Heuvelink, Gerard B. M.;Chen, Songchao;Deng, Xunfei;Yang, Lin
关键词:Hybrid modelling; Mechanistic knowledge-guided machine; learning; RothC; Random forest; Digital soil mapping; Soil carbon dynamics
-
Estimation of Spring Maize Planting Dates in China Using the Environmental Similarity Method
作者:Sheng, Meiling;Fei, Xufeng;Ren, Zhouqiao;Deng, Xunfei;Sheng, Meiling;Fei, Xufeng;Ren, Zhouqiao;Deng, Xunfei;Zhu, A-Xing;Ma, Tianwu;Zhu, A-Xing;Ma, Tianwu;Zhu, A-Xing
关键词:maize; planting dates; environmental similarity; the third law of geography; spatial prediction
-
Ensemble modelling-based pedotransfer functions for predicting soil bulk density in China
作者:Chen, Zhongxing;Chen, Songchao;Chen, Zhongxing;Wang, Zheng;Shi, Zhou;Chen, Songchao;Xue, Jie;Zhou, Yin;Deng, Xunfei;Liu, Feng;Song, Xiaodong;Zhang, Ganlin;Zhang, Ganlin;Su, Yang;Su, Yang;Zhu, Peng;Zhu, Peng
关键词:Soil organic carbon stock; Variable selection; Machine learning; Land cover; National scale; Soil database



