您好,欢迎访问中国热带农业科学院 机构知识库!

Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress

文献类型: 外文期刊

作者: Fu, Lili 1 ; Ding, Zehong 1 ; Sun, Xuepiao 1 ; Zhang, Jiaming 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, MOA Key Lab Trop Crops Biol & Genet Resources, Hainan Acad Trop Agr Resource,Hainan Bioenergy Ct, Xueyuan Rd 4, Haikou 571101, Hainan, Peoples R China

关键词: salt stress; freshwater plants; duckweed; Spirodela polyrhiza; RNA-seq analysis; expression regulation; ion homeostasis

期刊名称:GENES ( 影响因子:4.096; 五年影响因子:4.339 )

ISSN:

年卷期: 2019 年 10 卷 10 期

页码:

收录情况: SCI

摘要: Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.

  • 相关文献
作者其他论文 更多>>