Determination of SSC in pears by establishing the multi-cultivar models based on visible-NIR spectroscopy
文献类型: 外文期刊
作者: Li, Jiangbo 1 ; Zhang, Hailiang 3 ; Zhan, Baishao 3 ; Wang, Zheli 1 ; Jiang, Yinglan 1 ;
作者机构: 1.Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832003, Peoples R China
2.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
3.East China Jiaotong Univ, Coll Elect & Automat Engn, Nanchang 330013, Jiangxi, Peoples R China
关键词: Internal quality detection; Soluble solids content; Pear; Multi-cultivar model; Effective variable selection
期刊名称:INFRARED PHYSICS & TECHNOLOGY ( 影响因子:2.638; 五年影响因子:2.581 )
ISSN: 1350-4495
年卷期: 2019 年 102 卷
页码:
收录情况: SCI
摘要: Soluble solids content (SSC) is one of the most important quality attributes affecting the price of fresh fruit. The individual-cultivar model is the most common SSC analysis model. However, this type of model is not the optimal for assessment of SSC in the different cultivars of fruit. In this study, the feasibility of using multi-cultivar model for quantitatively determining SSC in three cultivars of pears was observed based on visible-NIR spectroscopy. The multi-cultivar and individual-cultivar models were developed and different variable selection algorithms were used to optimize models. Results showed that the multi-cultivar model was superior to individual-cultivar models for SSC prediction of all samples and competitive adaptive reweighted sampling (CARS) did better than Monte Carlo-uninformative variable elimination (MC-UVE) and successive projections algorithm (SPA) for selection of effective variables. Based on the selected variables, CARS-PLS and CARS-MLR multi-cultivar models can achieve effective prediction for SSC of three cultivars of pears with similar detection accuracy. The coefficients of determination for prediction set (R-P(2)) and root mean square error of prediction (RMSEP) obtained by these two types of models are 0.90-0.92 and 0.23-0.30 for three cultivars of pears. The overall results demonstrated that it was feasible to accurately determine SSC of different cultivars of pears using the multi-cultivar model, CARS was a powerful tool to select the efficient variables, and CARS-PLS and CARS-MLR were simple and excellent for the spectral calibration.
- 相关文献
作者其他论文 更多>>
-
Determination of the SSC in oranges using Vis-NIR full transmittance hyperspectral imaging and spectral visual coding: A practical solution to the scattering problem of inhomogeneous mixtures
作者:Cai, Letian;Li, Jiangbo;Zhang, Yizhi;Hao, Haoyuan;Cai, Letian;Zhang, Junyi;Zhang, Hailiang;Zhang, Yizhi
关键词:Citrus; SSC detection; Hyperspectral transmittance imaging; Spectral visual coding; Feature selection
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1
-
Smartphone-assisted fluorescent film based on the Flu grafted on Eu-MOF for real-time monitoring of fresh-cut fruit freshness
作者:Zhang, Zhepeng;Gao, Mingjie;Zou, Xiaobo;Guo, Zhiming;Zhang, Liang;Li, Jiangbo;El-Seedi, Hesham R.;Guo, Zhiming;El-Seedi, Hesham R.
关键词:Metal-organic framework; Grafted materials; Multifunctional filler; Fluorescence film; Fresh-cut fruits; Smartphone application
-
Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s
作者:Diao, Zhihua;Ma, Shushuai;Li, Xingyi;Zhao, Suna;He, Yan;Li, Jiangbo;Zhang, Jingcheng;Zhang, Baohua;Jiang, Liying;Jiang, Liying
关键词:Deep learning; Corn spraying robot; Navigation line detection; Lightweight network
-
Detection of bruising in pear with varying bruising degrees and formation times by using SIRI technique combining with texture feature-based LS-SVM and ResNet-18-based CNN model
作者:Li, Jiangbo;Zhang, Junyi;Mei, Mengwen;Li, Xuetong;Shi, Ruiyao;Cai, Zhonglei;Diao, Zhihua
关键词:Pears; Bruising detection; Convolutional neural network; Machine learning; Enhanced imaging



