Precise Recommendation Method of Suitable Planting Areas of Maize Varieties Based on Knowledge Graph
文献类型: 外文期刊
作者: Zou, Yidong 1 ; Pan, Shouhui 2 ; Yang, Feng 2 ; Zhang, Dongfeng 2 ; Han, Yanyun 2 ; Zhao, Xiangyu 2 ; Wang, Kaiyi 2 ; Zhao, Chunjiang 1 ;
作者机构: 1.Northwest Agr & Forestry Univ, Coll Informat Engn, Yangling 712100, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: maize varieties; knowledge graph; recommendation model; RippleNet; county-scale
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2023 年 13 卷 3 期
页码:
收录情况: SCI
摘要: The rapid increase in the number of new maize varieties and the intensification of market competition have raised the need to precisely promote new maize varieties to suitable planting areas and fully exploit the variety potential and win the market competition. This paper proposes a precise recommendation method for suitable planting areas of maize varieties based on a knowledge graph. The meteorology knowledge graph of maize ecological regions is constructed at county-scale and a RippleNet recommendation model is used to mine the potential spatial correlation of maize variety suitability in different meteorological environments. The county-scale precise recommendation for suitable planting areas is then realized. In total, 331 maize varieties and agricultural meteorological data of 59 experimental areas in the Huang-Huai-Hai ecological region are used for model training and testing (accuracy 76.3%). Through experimental comparison, the recommendation accuracy of this method is 24.3% higher than that of six traditional machine learning methods, 11.2% higher than that of graph attention networks, and 5.8% higher than that of graph convolution neural networks. This study provides a data-driven solution for the precise recommendation and market positioning of maize varieties, enhances the scientificity of variety recommendation and helps to fully exploit their planting potential.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
A Study of Maize Genotype-Environment Interaction Based on Deep K-Means Clustering Neural Network
作者:Bai, Longpeng;Bai, Longpeng;Wang, Kaiyi;Zhang, Qiusi;Zhang, Qi;Wang, Xiaofeng;Pan, Shouhui;He, Xuliang;Li, Ran;Zhang, Dongfeng;Han, Yanyun;Wang, Kaiyi;Pan, Shouhui;Zhang, Liyang;He, Xuliang;Li, Ran
关键词:small ecological region delineation; deep k-means clustering neural network; genotype by environment interaction
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



