Online analysis of watercore apples by considering different speeds and orientations based on Vis/NIR full-transmittance spectroscopy
文献类型: 外文期刊
作者: Zhang, Yifei 1 ; Wang, Zheli 1 ; Tian, Xi 1 ; Yang, Xuhai 2 ; Cai, Zhonglei 1 ; Li, Jiangbo 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing, Peoples R China
2.Shihezi Univ, Coll Mech & Elect Engn, Shihezi, Peoples R China
3.Xinjiang Prod & Construct Crop Key Lab Korla Frag, Shihezi, Peoples R China
关键词: Watercore apples; Online detection; Speed and orientation; Model establishment and comparison; Effective wavelength selection
期刊名称:INFRARED PHYSICS & TECHNOLOGY ( 影响因子:2.997; 五年影响因子:2.962 )
ISSN: 1350-4495
年卷期: 2022 年 122 卷
页码:
收录情况: SCI
摘要: Watercore is a common internal disorder of 'Fuji' apples, which affects the quality and price of fruit. Moreover, the flesh of watercore apples is prone to browning during storage, resulting in a loss of commercial value. However, the online detection of watercore apples is very difficult in actual production due to the interference of many factors. In this study, visible and near infrared (Vis/NIR) full-transmittance spectroscopy (680-1000 nm) was used to online analyze watercore apples. Three different detection orientations (O1, O2 and O3) and speeds (S1, S2 and S3) were compared in detail. In order to determine the optimal detection speed and orientation, the partial least square discriminant analysis (PLS-DA) and least squares-support vector machine (LS-SVM) models were established based on the preprocessing spectra of Savitzky-Golay smoothing and standard normal variate (SGS-SNV). The results showed that S2 speed (0.5 m/s) and O3 orientation (apple stem-calyx axis horizontal and parallel to the moving direction of conveyor belt) were the most suitable for detection of watercore apples. A combination algorithm (MC-UVE-SPA) of Monte Carlo-uninformative variable elimination (MC-UVE) and successive projections algorithm (SPA) was used to select effective wavelengths for classification of watercore apples and quantitative prediction of watercore degree. MC-UVE-SPA-PLS-DA and MC-UVE-SPA-LS-SVM models established based on effective wavelengths obtained the same classification performance with the success rates of 100 % and 96.87 % for healthy and watercore apples, respectively. In order to predict the watercore degree of apples, the partial least squares (PLS), multiple linear regression (MLR) and LS-SVM models were established based on spectra obtained S2 speed and O3 orientation. MC-UVE-SPA-LS-SVM model coupled with eight effective wavelengths obtained the optimal prediction accuracy of watercore degree with 0.93 of RP and 2.12 % of RMSEP. The overall results indicated that online detection of watercore apples based on Vis/NIR full-transmittance spectroscopy was feasible, and the classification accuracy was related to the detection speed and the sample orientation. In addition, the results also showed that the LS-SVM model has good performance for classification of watercore apples and quantitative evaluation of watercore degree.
- 相关文献
作者其他论文 更多>>
-
Determination of the SSC in oranges using Vis-NIR full transmittance hyperspectral imaging and spectral visual coding: A practical solution to the scattering problem of inhomogeneous mixtures
作者:Cai, Letian;Li, Jiangbo;Zhang, Yizhi;Hao, Haoyuan;Cai, Letian;Zhang, Junyi;Zhang, Hailiang;Zhang, Yizhi
关键词:Citrus; SSC detection; Hyperspectral transmittance imaging; Spectral visual coding; Feature selection
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1
-
Research on the Method of Online Detection of Hollow Watermelons Based on Full-Transmission Near-Infrared Spectroscopy
作者:Li, Jia-qi;Li, Jia-qi;Tian, Xi;Wang, Qing-yan;He, Xin;Huang, Wen-qian;Li, Jia-qi;Tian, Xi;Wang, Qing-yan;He, Xin;Huang, Wen-qian
关键词:Full-transmission near-infrared spectroscopy; Hollow watermelons; Weighted spectra; 1D-CNN
-
Smartphone-assisted fluorescent film based on the Flu grafted on Eu-MOF for real-time monitoring of fresh-cut fruit freshness
作者:Zhang, Zhepeng;Gao, Mingjie;Zou, Xiaobo;Guo, Zhiming;Zhang, Liang;Li, Jiangbo;El-Seedi, Hesham R.;Guo, Zhiming;El-Seedi, Hesham R.
关键词:Metal-organic framework; Grafted materials; Multifunctional filler; Fluorescence film; Fresh-cut fruits; Smartphone application
-
Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s
作者:Diao, Zhihua;Ma, Shushuai;Li, Xingyi;Zhao, Suna;He, Yan;Li, Jiangbo;Zhang, Jingcheng;Zhang, Baohua;Jiang, Liying;Jiang, Liying
关键词:Deep learning; Corn spraying robot; Navigation line detection; Lightweight network



