Rapid Determination of Different Ripening Stages of Occidental Pears (Pyrus communis L.) by Volatile Organic Compounds Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)
文献类型: 外文期刊
作者: Wang, Yuanmo 1 ; Zhu, Qingzhen 1 ; Liu, Songzhong 3 ; Jiao, Leizi 1 ; Dong, Daming 1 ;
作者机构: 1.Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Res Ctr Intelligent Equipment, Beijing 100097, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Inst Forestry & Pomol, Beijing 100097, Peoples R China
关键词: volatile organic compounds; proton-transfer-reaction mass spectrometry; Occidental pear; fruit ripening; heatmap clustering; principal component analysis
期刊名称:FOODS ( 影响因子:5.2; 五年影响因子:5.5 )
ISSN:
年卷期: 2024 年 13 卷 4 期
页码:
收录情况: SCI
摘要: Determination of Occidental pear (Pyrus communis) ripening is difficult because the appearance of Occidental pears does not change significantly during the ripening process. Occidental pears at different ripening stages release different volatile organic compounds (VOCs), which can be used to determine fruit ripeness non-destructively and rapidly. In this study, VOCs were detected using proton-transfer-reaction mass spectrometry (PTR-MS). Notably, data were acquired within 1 min. Occidental pears harvested at five separate times were divided into three ripening stages: unripe, ripe, and overripe. The results showed that the composition of VOCs differed depending on the ripening stage. In particular, the concentrations of esters and terpenes significantly increased during the overripe stage. Three ripening stages were clearly discriminated by heatmap clustering and principal component analysis (PCA). This study provided a rapid and non-destructive method to evaluate the ripening stages of Occidental pears. The result can help fruit farmers to decide the optimum harvest time and hence reduce their economic losses.
- 相关文献
作者其他论文 更多>>
-
On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy
作者:Wan, Yuanxin;Zheng, Peichao;Wan, Yuanxin;Ma, Shixiang;Zhao, Xiande;Xing, Zhen;Jiao, Leizi;Tian, Hongwu;Dong, Daming;Ma, Shixiang;Zhao, Xiande;Xing, Zhen;Jiao, Leizi;Tian, Hongwu;Dong, Daming
关键词:laser-induced breakdown spectroscopy (LIBS); miniaturized LIBS; on-site detection
-
Transcriptome sequencing elucidates the adaptation mechanisms of Pyrus betulifolia to cold and drought conditions
作者:Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong
关键词:
Pyrus betulifolia ; Cold; Drought; Transcriptome -
Simultaneous prediction of multiple soil components using Mid-Infrared Spectroscopy and the GADF-Swin Transformer model
作者:Guo, Wenqi;Gao, Shichen;Ding, Yaohui;Dong, Daming;Guo, Wenqi;Dong, Daming;Guo, Wenqi;Dong, Daming
关键词:Multiple soil components; Simultaneous prediction; Mid-infrared spectroscopy; Gramian angular difference fields; Swin transformer
-
D-YOLO: A Lightweight Model for Strawberry Health Detection
作者:Wu, Enhui;Ma, Ruijun;Wu, Enhui;Dong, Daming;Zhao, Xiande;Wu, Enhui;Dong, Daming;Zhao, Xiande
关键词:strawberry; YOLOv8; lightweight; object detection; smart agriculture
-
A novel phosphate detection sensor: From FTIR to EC-QCL
作者:Shen, Tianyi;Gao, Shichen;Shen, Tianyi;Liu, Yachao;Dong, Daming;Wang, Siyu
关键词:Phosphate; External cavity quantum cascade laser; Laser absorption spectrum; In-situ detection
-
Quantitative analysis improvement of laser-induced breakdown spectroscopy based a newly beam shaping method
作者:Chen, Guanghui;Zheng, Peichao;Wang, Jinmei;Li, Biao;Liu, Xufeng;Yang, Zhi;Sun, Zhicheng;Tian, Hongwu;Dong, Daming;Tian, Hongwu;Dong, Daming;Guo, Lianbo
关键词:
-
Dual-beam photothermal material trace detection method based on self-mixing interference
作者:Zhao, Yan;Zhi, Yunlong;Zhao, Hui;Dong, Daming;Tong, Jigang;Zhao, Yan;Zhi, Yunlong;Zhao, Hui;Tong, Jigang;Dong, Daming;Tu, Chunling
关键词:



