您好,欢迎访问浙江省农业科学院 机构知识库!

Contributions of Different N Sources to Crop N Nutrition in a Chinese Rice Field

文献类型: 外文期刊

作者: Chen Yi 1 ; Tang Xu 1 ; Yang Sheng-Mao 1 ; Wu Chun-Yan 1 ; Wang Jia-Yu 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Environm Resources & Soil Fertilizer, Hangzhou 310021, Zhejiang, Peoples R China

关键词: growing season;soil organic matter;crop residue incorporation

期刊名称:PEDOSPHERE ( 影响因子:3.911; 五年影响因子:4.814 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: N availability is one of the most important factors limiting crop yield enhancement. The recovery of applications of N-15-labeled fertilizer and crop residues in a rice-wheat cropping system was determined for up to 6 consecutive growing seasons. The crop residues from the previous season were either incorporated or removed as two different treatments. Our results showed that 16.55%-17.79% (17.17% on average) of the fertilizer N was recovered in the crop during the first growing season, suggesting that more than 80% of crop N was not directly from the N fertilizer. When N-15-labeled residues were applied, 12.01% was recovered in the crop in the first growing season. The average recoveries of fertilizer N and crop residue N in the soil after the first growing season were 33.46% and 85.64%, respectively. N from soil organic matter contributed approximately 83% of the N in the crop when N-15 fertilizer was applied or 88% when crop residues were applied. There was a larger difference in the total N-15 recovery in plant and soil between N applications in the forms of fertilizer and crop residues. Incorporation of crop residues following the N-15 fertilizer application did not significantly promote N-15 recovery in the crop or soil. On average, only additional 1.94% of N for the fertilizer-applied field or 5.97% of N for the crop residue-applied field was recovered by the crops during the 2nd and 3rd growing seasons. The total recoveries of N-15 in crop and soil were approximately 64.38% for the fertilizer-applied field after 6 growing seasons and 79.11% for the crop residue-applied field after 5 growing seasons. Although fertilizer N appeared to be more readily available to crops than crop residue N, crop residue N replenished soil N pool, especially N from soil organic matter, much more than fertilizer N. Therefore, crop residue N was a better source for sustaining soil organic matter. Our results suggested that the long-term effect of fertilizer or crop residues on N recovery were different in the crop and soil. However, there was little difference between the practices of crop residue incorporation and residue removal following the N fertilizer application.

  • 相关文献

[1]Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Wang, Yidong,Wang, Zhong-Liang,Hu, Ning,Lou, Yilai,Ge, Tida,Kuzyakov, Yakov,Li, Zhongfang,Tang, Zheng,Chen, Yi,Wu, Chunyan.

[2]Spatial distribution of soil organic matter in tillage layers in a southern China basin using classifications and spatial interpolation algorithms. Deng, X. F.,Lv, X. N.,Zhang, M. H.,Li, S. Q.. 2013

[3]Relationships Between Arbuscular Mycorrhizal Symbiosis and Soil Fertility Factors in Citrus Orchards Along an Altitudinal Gradient. Wang Peng,Shu Bo,Liu Jin-Fa,Xia Ren-Xue,Wang Peng,Wang Yin. 2015

[4]Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Wang, Peng,Wang, Yin,Wang, Peng,Wu, Qiang Sheng.

作者其他论文 更多>>