您好,欢迎访问北京市农林科学院 机构知识库!

Genome-wide transcriptome analysis of two maize inbred lines under drought stress

文献类型: 外文期刊

作者: Zheng, Jun 1 ; Fu, Junjie 3 ; Gou, Mingyue 3 ; Huai, Junling 3 ; Liu, Yunjun 1 ; Jian, Min 3 ; Huang, Quansheng 4 ; Guo, 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China

2.Chinese Acad Agr Sci, Natl Ctr Plant Gene Res, Beijing 100081, Peoples R China

3.China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100193, Peoples R China

4.Xinjiang Acad Agr Sci

关键词: Maize;Drought stress;Expression profiling;Abscisic acid

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought stress greatly affects plant growth and crop yield. To understand the transcriptome dynamics during drought stress in maize seedlings, genome-wide gene expression profiling was compared between the drought-tolerant line Han21 and drought-sensitive line Ye478 using Affymetrix Maize Genome Array containing 17,555 probe sets. The results showed that in response to drought, the Han21 line had fewer probe sets with significant expression change than the Ye478 line and both lines had a common set of similar to 2,600 regulated probe sets under drought stress. The potential components of the abscisic acid signaling pathway were significantly identified from the common probe sets. A total of 827 probe sets with significantly differential expression between the two lines under drought stress were identified. The differential expression levels of cell wall-related and transporter genes may contribute to the different tolerances of the two lines. Additionally, we found that, compared to the sensitive line Ye478, the transcriptional levels of drought-responsive probe sets in the tolerant line Han21 recovered more quickly after re-watering, and more probe sets in the tolerant line Han21 were exclusively up-regulated at the re-watering stage. Our study provides a global gene expression dynamics of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize.

  • 相关文献

[1]Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families. Zhang, Zhongbao,Li, Xianglong,Zhang, Chun,Wu, Zhongyi,Zou, Huawen,Wu, Zhongyi.

[2]Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Li, Tao,Sun, Yuqing,Xu, Lijiiao,Hu, Yajun,Hao, Zhipeng,Zhang, Xin,Li, Hong,Chen, Baodong,Ruan, Yuan,Hu, Yajun,Wang, Youshan,Yang, Liguo.

[3]Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Bai, Ling,Zhang, Guozeng,Zhou, Yun,Zhang, Zhaopei,Wang, Wei,Du, Yanyan,Song, Chun-Peng,Wu, Zhongyi. 2009

[4]Nucleotide Variation in the NCED3 Region of Arabidopsis thaliana and its Association Study with Abscisic Acid Content under Drought Stress. Hao, Gang-Ping,Zhang, Xiu-Hai,Wang, Yong-Qin,Wu, Zhong-Yi,Huang, Cong-Lin,Hao, Gang-Ping.

[5]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[6]Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. Li, Fangjun,Li, Maoying,Duan, Liusheng,Li, Zhaohu,Li, Fangjun,Wang, Ping,Cox, Kevin L., Jr.,Shan, Libo,Li, Maoying,He, Ping,Li, Maoying,Wang, Ping,Dever, Jane K..

[7]Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China. Liu Zhi-zhai,Guo Rong-hua,Wang Rong-huan,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Liu Zhi-zhai,Cai Yi-lin,Guo Rong-hua,Cao Mo-ju,Zhao Jiu-ran,Wang Feng-ge,Wang Rong-huan. 2010

[8]A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603. Pan Yu,Chen Xu-qing,Xie Hua,Li Xiang-long,Zhang Xiao-dong,Han Li-xin,Yang Feng-ping,Xue Jing,Zhang Li-quan,Pan Yu,Deng Lei. 2015

[9]Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Zhang, Danfeng,Liu, Shuangshuang,Rao, Liqun,Wan, Xiangyuan,Zhang, Danfeng,Wu, Suowei,An, Xueli,Xie, Ke,Dong, Zhenying,Zhu, Taotao,Wan, Xiangyuan,Xu, Liwen,Zhao, Jiuran,Zhang, Danfeng,Zhou, Yan,Fang, Wen,Liu, Shensi,Liu, Shuangshuang,Li, Jinping. 2018

[10]Nitrogen Status Diagnosis by Using Digital Photography Analysis for Organic Fertilized Maize. Sun Qin-ping,Li Ji-jin,Zou Guo-yuan,Xiang Cheng-cai,Luo Yi-ming,Liu Ben-sheng. 2010

[11]Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Wang, Feng-Ge,Tian, Hong-Li,Zhao, Jiu-Ran,Yi, Hong-Mei,Wang, Lu,Song, Wei. 2011

[12]Evaluation of the genetic diversity and genome-wide linkage disequilibrium of Chinese maize inbred lines. Wang, Ming,Zhang, Xiaobo,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2011

[13]Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Luo, Meijie,Zhao, Yanxin,Wang, Yuandong,Shi, Zi,Zhang, Panpan,Zhang, Yunxia,Song, Wei,Zhao, Jiuran. 2018

[14]THREE-DIMENSIONAL VISUALIZATION OF VASCULAR BUNDLES IN STEM NODES OF MAIZE. Zhang, Ying,Du, Jianjun,Guo, Xinyu,Yan, Weiping,Zhao, Chunjiang. 2017

[15]Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Xu, Xinpeng,Xu, Xinpeng,He, Ping,Zhang, Jiajia,Zhou, Wei,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[16]Microbacterium zeae sp nov., an endophytic bacterium isolated from maize stem. Gao, Jun-lian,Wang, Xu-ming,Lv, Fan-yang,Sun, Jian-guang,Sun, Pengbo.

[17]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[18]Identification and characterization of a novel adenine phosphoribosyltransferase gene (ZmAPT2) from maize (Zea mays L.). Wu, Suowei,Yu, Zhanwang,Li, Weihua,Yang, Qingkai,Ye, Chunjiang,Sun, Yan,Jin, Demin,Wang, Bin,Wu, Suowei,Li, Weihua,Yang, Qingkai,Wang, Fengge,Zhao, Jiuran.

[19]Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil. Zheng, Yongquan,He, Min,Jia, Hong C.,Song, Dan.

[20]Rhizobium wenxiniae sp nov., an endophytic bacterium isolated from maize root. Gao, Jun-lian,Wang, Xu-ming,Sun, Pengbo,Lv, Fan-yang,Mao, Xiao-jie,Sun, Jian-guang.

作者其他论文 更多>>