Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
文献类型: 外文期刊
作者: Xu, Xiaobin 1 ; Teng, Cong 1 ; Zhu, Hongchun 1 ; Feng, Haikuan 2 ; Zhao, Yu 2 ; Li, Zhenhai 1 ;
作者机构: 1.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Shandong, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
关键词: hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING ( 影响因子:2.4; 五年影响因子:2.8 )
ISSN: 1934-6344
年卷期: 2024 年 17 卷 2 期
页码:
收录情况: SCI
摘要: Predicting crop yield timely can considerably accelerate agricultural production management and food policymaking, which are also important requirements for precise agricultural development. Given the development of hyperspectral imaging technology, a simple and efficient modeling method is convenient for predicting crop yield by using airborne hyperspectral images. In this study, the Unmanned Aerial Vehicle (UAV) hyperspectral and maturity yield data in 2014-2015 and 2017-2018 were collected. The winter wheat yield prediction model was established by optimizing Vegetation Indices (VIs) feature scales and sample scales, incorporating Partial Least Squares Regression (PLSR), Random Forest algorithm (RF), and Back Propagation Neural Network algorithm (BPN). Results showed that PLSR stands out as the optimal wheat yield prediction model considering stability and accuracy (RMSE=948.88 kg/hm2). Contrary to the belief that more input features result in higher accuracy, PLSR, RF, and BPN models performed best when trained with the top 3, 8, and 4 VIs with the highest correlation, respectively. With an increase in training samples, model accuracy improves, reaching stability when the training samples reach 70. Using PLSR and optimal feature scales, UAV yield prediction maps were generated, holding significant value for field management in precision agriculture.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH