您好,欢迎访问北京市农林科学院 机构知识库!

Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images

文献类型: 外文期刊

作者: Xu, Xiaobin 1 ; Teng, Cong 1 ; Zhu, Hongchun 1 ; Feng, Haikuan 2 ; Zhao, Yu 2 ; Li, Zhenhai 1 ;

作者机构: 1.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Shandong, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China

关键词: hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing

期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING ( 影响因子:2.4; 五年影响因子:2.8 )

ISSN: 1934-6344

年卷期: 2024 年 17 卷 2 期

页码:

收录情况: SCI

摘要: Predicting crop yield timely can considerably accelerate agricultural production management and food policymaking, which are also important requirements for precise agricultural development. Given the development of hyperspectral imaging technology, a simple and efficient modeling method is convenient for predicting crop yield by using airborne hyperspectral images. In this study, the Unmanned Aerial Vehicle (UAV) hyperspectral and maturity yield data in 2014-2015 and 2017-2018 were collected. The winter wheat yield prediction model was established by optimizing Vegetation Indices (VIs) feature scales and sample scales, incorporating Partial Least Squares Regression (PLSR), Random Forest algorithm (RF), and Back Propagation Neural Network algorithm (BPN). Results showed that PLSR stands out as the optimal wheat yield prediction model considering stability and accuracy (RMSE=948.88 kg/hm2). Contrary to the belief that more input features result in higher accuracy, PLSR, RF, and BPN models performed best when trained with the top 3, 8, and 4 VIs with the highest correlation, respectively. With an increase in training samples, model accuracy improves, reaching stability when the training samples reach 70. Using PLSR and optimal feature scales, UAV yield prediction maps were generated, holding significant value for field management in precision agriculture.

  • 相关文献
作者其他论文 更多>>