Research on Diagnosis Characteristics of Wheat Powdery Mildew Under Different Severity Grading Standards
文献类型: 外文期刊
作者: Zhang, Dongyan 1 ; Yin, Xun 1 ; Lin, Fenfang 2 ; Huang, Linsheng 1 ; Zhao, Jinling 1 ; Liu, Yu 1 ; Ma, Wei 3 ; Hong, Qi 1 ;
作者机构: 1.Anhui Univ, Anhui Engn Lab Agroecol Big Data, Hefei, Peoples R China
2.Nanjing Univ Informat Sci & Technol, Sch Geog & Remote Sensing, Nanjing, Peoples R China
3.Beijing Res Ctr Intelligent Equipment Agr, Beijing, Peoples R China
关键词: Sensitive hand; Vegetation index; SVM; Wheat powdery mildew
期刊名称:2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS)
ISSN: 2334-3168
年卷期: 2019 年
页码:
收录情况: SCI
摘要: Wheat powdery mildew (Blumeria graminis Dc.speer) is one of the most devastating crop diseases in the globe. Thinking of economic effective and environmental protection value, early detection of the severity of wheat powdery mildew can provide important information and technical support for disease prevention. In this study, the wheat leaves infected powdery mildew were chosen as observation objects, the obtained hyperspectral imagery data was pre-processed by reflectance calculation and noise elimination. After the disease-infected samples with different severities were divided into three-levels, four-levels, and five-levels, the effects of samples classification on identification of the disease were explored. Subsequently, the Relief-F algorithm was used to screen the sensitive bands of the disease in the early and mid-late growth stages, to observe the wavelengths change of disease identification in different developmental periods. The results showed that the sensitive bands of disease detection respectively locate at 700 nm and 680 nm for the early and mid-late growth stages, and the position of sensitive wavelength moves toward the short-wave direction as the disease worsens. On the basis, Calculating the powdery mildew disease index (PMDI) and nine kinds of common vegetation indexes, to compare their effects on disease identification, the study found that when the samples were divided into four levels, the determination coefficient R-2 of PMDI is the highest. For the early and mid-late infection stages, the R-2 are respectively 0.763 and 0.766. Furthermore, the corresponding SVM models were established in the different developmental periods, the classification accuracy is 90.63% at the early growth stage, while that one is the 84.62% at mid-late developmental period. The above results show that PMDI calculated by the sensitive band screening has good effective on identifying the severity of the disease, especially there is a good potential at the early growth stage.
- 相关文献
作者其他论文 更多>>
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Extraction of the upright maize straw by integrating UAV multispectral and DSM data
作者:Chao, Aosheng;Xing, Enguang;Gao, Yunbing;Li, Cunjun;Qin, Yuan;Zhu, Chengyang;Liu, Yu;Chao, Aosheng;Zhu, Chengyang;Zhu, Qingwei
关键词:Upright maize straw; UAV; New straw index; Spectral characteristics; Digital surface model
-
Estimation of SOC using VNIR and MIR hyperspectral data based on spectral-to-image transforming and multi-channel CNN
作者:Tang, Aohua;Yang, Guijun;Li, Zhenhong;Chen, Weinan;Zhang, Jing;Tang, Aohua;Yang, Guijun;Pan, Yuchun;Liu, Yu;Long, Huiling;Chen, Weinan;Zhang, Jing;Yang, Yue;Yang, Xiaodong;Xu, Bo;Yang, Yue
关键词:MIR spectral; Multi-channel-CNN; SIT; Soil organic carbon; VNIR spectral
-
Two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain respond differently to heat stress
作者:Guo, Yuan;Gao, Qi;Liu, Yu;Wang, Shouxian;Jiao, Wenyu;Zhang, Yajie;Tan, Meiting
关键词:
Lentinula edodes ; heat stress response; metabolomics; transcriptomics; multi-omics integration -
A machine learning system to evaluate physiological parameters and heat stress for sows in gestation crates
作者:Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Zhuang, Yanrong;Cao, Mengbing;Zhang, Jinrui
关键词:Sow; Heat stress; Physiological parameters prediction; Machine learning; LabVIEW
-
Identification of seed maize fields from hyperspectral imagery by fusion of spectral and spatial features
作者:Cheng, Jinpeng;Cao, Xiaoyu;Wu, Qiang;Ma, Xinming;Xiong, Shuping;Cheng, Jinpeng;Yang, Hao;Zhang, Na;Yang, Guijun;Zhang, Na;Huang, Linsheng;Yan, Zhiyu;Wang, Hongbin;Yang, Guijun
关键词:Hyperspectral image classification; Seed maize; Class means matrix clustering; Morphology profiles; Machine learning
-
ICFMNet: an automated segmentation and 3D phenotypic analysis pipeline for plant, spike, and flag leaf type of wheat
作者:Xiao, Pengliang;Huang, Linsheng;Liang, Dong;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Gao, Shiqing
关键词:3D phenotypic automated analysis; Semantic segmentation; Instance segmentation; Deep learning



